These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 26958077)
21. Arundo donax L.: a non-food crop for bioenergy and bio-compound production. Corno L; Pilu R; Adani F Biotechnol Adv; 2014 Dec; 32(8):1535-49. PubMed ID: 25457226 [TBL] [Abstract][Full Text] [Related]
22. Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Mirza N; Mahmood Q; Pervez A; Ahmad R; Farooq R; Shah MM; Azim MR Bioresour Technol; 2010 Aug; 101(15):5815-9. PubMed ID: 20363125 [TBL] [Abstract][Full Text] [Related]
23. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy. Yu S; Sheng L; Zhang C; Deng H Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 198():88-91. PubMed ID: 29524747 [TBL] [Abstract][Full Text] [Related]
24. Unigene-based RNA-seq provides insights on drought stress responses in Marsdenia tenacissima. Meng HL; Zhang W; Zhang GH; Wang JJ; Meng ZG; Long GQ; Yang SC PLoS One; 2018; 13(11):e0202848. PubMed ID: 30500823 [TBL] [Abstract][Full Text] [Related]
25. Identification of differentially-expressed genes potentially implicated in drought response in pitaya (Hylocereus undatus) by suppression subtractive hybridization and cDNA microarray analysis. Fan QJ; Yan FX; Qiao G; Zhang BX; Wen XP Gene; 2014 Jan; 533(1):322-31. PubMed ID: 24076355 [TBL] [Abstract][Full Text] [Related]
26. Effect of Increasing Salinity on Development of Giant Reed (Arundo donax) from Rhizome and Culms. Allinson G Bull Environ Contam Toxicol; 2017 Dec; 99(6):743-747. PubMed ID: 29080112 [TBL] [Abstract][Full Text] [Related]
27. Transcriptional Responses in Root and Leaf of Ksouri N; Jiménez S; Wells CE; Contreras-Moreira B; Gogorcena Y Front Plant Sci; 2016; 7():1715. PubMed ID: 27933070 [No Abstract] [Full Text] [Related]
28. Comparison of three ionic liquids pretreatment of Arundo donax L. For enhanced photo-fermentative hydrogen production. Chen Z; Jiang D; Zhang T; Lei T; Zhang H; Yang J; Shui X; Li F; Zhang Y; Zhang Q Bioresour Technol; 2022 Jan; 343():126088. PubMed ID: 34624469 [TBL] [Abstract][Full Text] [Related]
29. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress. He X; Ma H; Zhao X; Nie S; Li Y; Zhang Z; Shen Y; Chen Q; Lu Y; Lan H; Zhou S; Gao S; Pan G; Lin H PLoS One; 2016; 11(3):e0151697. PubMed ID: 26990640 [TBL] [Abstract][Full Text] [Related]
30. Value-added products from wastewater reduce irrigation needs of Arundo donax energy crop. Cano-Ruiz J; Ruiz Fernández J; Alonso J; Mauri PV; Lobo MC Chemosphere; 2021 Dec; 285():131485. PubMed ID: 34265719 [TBL] [Abstract][Full Text] [Related]
31. Modulation of class III peroxidase pathways and phenylpropanoids in Arundo donax under salt and phosphorus stress. Cocozza C; Bartolini P; Brunetti C; Miozzi L; Pignattelli S; Podda A; Scippa GS; Trupiano D; Rotunno S; Brilli F; Maserti BE Plant Physiol Biochem; 2022 Jul; 183():151-159. PubMed ID: 35598532 [TBL] [Abstract][Full Text] [Related]
32. Rootstock-induced molecular responses associated with drought tolerance in sweet orange as revealed by RNA-Seq. Gonçalves LP; Boscariol Camargo RL; Takita MA; Machado MA; Dos Soares Filho WS; Costa MGC BMC Genomics; 2019 Feb; 20(1):110. PubMed ID: 30727949 [TBL] [Abstract][Full Text] [Related]
33. [Tolerance of Arundo donax to heavy metals]. Han Z; Hu Z Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):161-5. PubMed ID: 15852979 [TBL] [Abstract][Full Text] [Related]
34. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. Fan W; Zhao M; Li S; Bai X; Li J; Meng H; Mu Z BMC Plant Biol; 2016 Apr; 16():99. PubMed ID: 27101806 [TBL] [Abstract][Full Text] [Related]
35. Identification of Known and Novel Rotunno S; Cocozza C; Pantaleo V; Leonetti P; Bertoldi L; Valle G; Accotto GP; Loreto F; Scippa GS; Miozzi L Life (Basel); 2022 Apr; 12(5):. PubMed ID: 35629319 [TBL] [Abstract][Full Text] [Related]
36. Isolation and characterization of a buffalograss (Buchloe dactyloides) dehydration responsive element binding transcription factor, BdDREB2. Zhang P; Yang P; Zhang Z; Han B; Wang W; Wang Y; Cao Y; Hu T Gene; 2014 Feb; 536(1):123-8. PubMed ID: 24333268 [TBL] [Abstract][Full Text] [Related]
37. Selenate tolerance and selenium hyperaccumulation in the monocot giant reed (Arundo donax), a biomass crop plant with phytoremediation potential. Domokos-Szabolcsy É; Fári M; Márton L; Czakó M; Veres S; Elhawat N; Antal G; El-Ramady H; Zsíros O; Garab G; Alshaal T Environ Sci Pollut Res Int; 2018 Nov; 25(31):31368-31380. PubMed ID: 30196460 [TBL] [Abstract][Full Text] [Related]
38. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits. Morgil H; Tardu M; Cevahir G; Kavakli İH Funct Integr Genomics; 2019 Sep; 19(5):715-727. PubMed ID: 31001704 [TBL] [Abstract][Full Text] [Related]
39. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions. Gong L; Zhang H; Gan X; Zhang L; Chen Y; Nie F; Shi L; Li M; Guo Z; Zhang G; Song Y PLoS One; 2015; 10(5):e0128041. PubMed ID: 26010543 [TBL] [Abstract][Full Text] [Related]
40. A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. Tripathi P; Rabara RC; Reese RN; Miller MA; Rohila JS; Subramanian S; Shen QJ; Morandi D; Bücking H; Shulaev V; Rushton PJ BMC Genomics; 2016 Feb; 17():102. PubMed ID: 26861168 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]