These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 26958183)
1. Semi-supervised Learning for Phenotyping Tasks. Dligach D; Miller T; Savova GK AMIA Annu Symp Proc; 2015; 2015():502-11. PubMed ID: 26958183 [TBL] [Abstract][Full Text] [Related]
2. Weakly Semi-supervised phenotyping using Electronic Health records. Nogues IE; Wen J; Lin Y; Liu M; Tedeschi SK; Geva A; Cai T; Hong C J Biomed Inform; 2022 Oct; 134():104175. PubMed ID: 36064111 [TBL] [Abstract][Full Text] [Related]
4. Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions. Chen K; Wang S IEEE Trans Pattern Anal Mach Intell; 2011 Jan; 33(1):129-43. PubMed ID: 20421671 [TBL] [Abstract][Full Text] [Related]
5. Semi-supervised Double Deep Learning Temporal Risk Prediction (SeDDLeR) with Electronic Health Records. Nogues IE; Wen J; Zhao Y; Bonzel CL; Castro VM; Lin Y; Xu S; Hou J; Cai T J Biomed Inform; 2024 Sep; 157():104685. PubMed ID: 39004109 [TBL] [Abstract][Full Text] [Related]
6. SemiBoost: boosting for semi-supervised learning. Mallapragada PK; Jin R; Jain AK; Liu Y IEEE Trans Pattern Anal Mach Intell; 2009 Nov; 31(11):2000-14. PubMed ID: 19762927 [TBL] [Abstract][Full Text] [Related]
7. A novel logistic regression model combining semi-supervised learning and active learning for disease classification. Chai H; Liang Y; Wang S; Shen HW Sci Rep; 2018 Aug; 8(1):13009. PubMed ID: 30158596 [TBL] [Abstract][Full Text] [Related]
8. Semi-supervised validation of multiple surrogate outcomes with application to electronic medical records phenotyping. Hong C; Liao KP; Cai T Biometrics; 2019 Mar; 75(1):78-89. PubMed ID: 30267536 [TBL] [Abstract][Full Text] [Related]
9. Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models. Caragea C; Caragea D; Silvescu A; Honavar V BMC Bioinformatics; 2010 Oct; 11 Suppl 8(Suppl 8):S6. PubMed ID: 21034431 [TBL] [Abstract][Full Text] [Related]
10. A semi-supervised machine learning framework for microRNA classification. Sheikh Hassani M; Green JR Hum Genomics; 2019 Oct; 13(Suppl 1):43. PubMed ID: 31639051 [TBL] [Abstract][Full Text] [Related]
11. Exploiting Unlabeled Texts with Clustering-based Instance Selection for Medical Relation Classification. Kim Y; Riloff E; Meystre SM AMIA Annu Symp Proc; 2017; 2017():1060-1069. PubMed ID: 29854174 [TBL] [Abstract][Full Text] [Related]
12. Distant Supervision with Transductive Learning for Adverse Drug Reaction Identification from Electronic Medical Records. Taewijit S; Theeramunkong T; Ikeda M J Healthc Eng; 2017; 2017():7575280. PubMed ID: 29090077 [TBL] [Abstract][Full Text] [Related]
13. Clinical Document Classification Using Labeled and Unlabeled Data Across Hospitals. Hassanzadeh H; Kholghi M; Nguyen A; Chu K AMIA Annu Symp Proc; 2018; 2018():545-554. PubMed ID: 30815095 [TBL] [Abstract][Full Text] [Related]
14. Leveraging permutation testing to assess confidence in positive-unlabeled learning applied to high-dimensional biological datasets. Xu S; Ackerman ME BMC Bioinformatics; 2024 Jun; 25(1):218. PubMed ID: 38898392 [TBL] [Abstract][Full Text] [Related]
15. Single-reviewer electronic phenotyping validation in operational settings: Comparison of strategies and recommendations. Kukhareva P; Staes C; Noonan KW; Mueller HL; Warner P; Shields DE; Weeks H; Kawamoto K J Biomed Inform; 2017 Feb; 66():1-10. PubMed ID: 27956265 [TBL] [Abstract][Full Text] [Related]
16. Semi-supervised learning of the electronic health record for phenotype stratification. Beaulieu-Jones BK; Greene CS; J Biomed Inform; 2016 Dec; 64():168-178. PubMed ID: 27744022 [TBL] [Abstract][Full Text] [Related]
18. A Generic Semi-Supervised and Active Learning Framework for Biomedical Text Classification. Flores CA; Verschae R Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4445-4448. PubMed ID: 36085799 [TBL] [Abstract][Full Text] [Related]
19. Unsupervised and semi-supervised learning: the next frontier in machine learning for plant systems biology. Yan J; Wang X Plant J; 2022 Sep; 111(6):1527-1538. PubMed ID: 35821601 [TBL] [Abstract][Full Text] [Related]
20. Semi-supervised ROC analysis for reliable and streamlined evaluation of phenotyping algorithms. Gao J; Bonzel CL; Hong C; Varghese P; Zakir K; Gronsbell J J Am Med Inform Assoc; 2024 Feb; 31(3):640-650. PubMed ID: 38128118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]