These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26958278)

  • 1. Handling Temporality of Clinical Events for Drug Safety Surveillance.
    Zhao J; Henriksson A; Kvist M; Asker L; Boström H
    AMIA Annu Symp Proc; 2015; 2015():1371-80. PubMed ID: 26958278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning temporal weights of clinical events using variable importance.
    Zhao J; Henriksson A
    BMC Med Inform Decis Mak; 2016 Jul; 16 Suppl 2(Suppl 2):71. PubMed ID: 27459993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning models to detect and predict patient safety events using electronic health records: A systematic review.
    Deimazar G; Sheikhtaheri A
    Int J Med Inform; 2023 Dec; 180():105246. PubMed ID: 37837710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive modeling of structured electronic health records for adverse drug event detection.
    Zhao J; Henriksson A; Asker L; Boström H
    BMC Med Inform Decis Mak; 2015; 15 Suppl 4(Suppl 4):S1. PubMed ID: 26606038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A classification framework for exploiting sparse multi-variate temporal features with application to adverse drug event detection in medical records.
    Bagattini F; Karlsson I; Rebane J; Papapetrou P
    BMC Med Inform Decis Mak; 2019 Jan; 19(1):7. PubMed ID: 30630486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding.
    Wunnava S; Qin X; Kakar T; Sen C; Rundensteiner EA; Kong X
    Drug Saf; 2019 Jan; 42(1):113-122. PubMed ID: 30649736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying adverse drug event information in clinical notes with distributional semantic representations of context.
    Henriksson A; Kvist M; Dalianis H; Duneld M
    J Biomed Inform; 2015 Oct; 57():333-49. PubMed ID: 26291578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for systematic discovery of adverse drug events from clinical notes.
    Wang G; Jung K; Winnenburg R; Shah NH
    J Am Med Inform Assoc; 2015 Nov; 22(6):1196-204. PubMed ID: 26232442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Making Sense of Pharmacovigilance and Drug Adverse Event Reporting: Comparative Similarity Association Analysis Using AI Machine Learning Algorithms in Dogs and Cats.
    Xu X; Mazloom R; Goligerdian A; Staley J; Amini M; Wyckoff GJ; Riviere J; Jaberi-Douraki M
    Top Companion Anim Med; 2019 Dec; 37():100366. PubMed ID: 31837760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of adverse drug reaction signals using an electronic health records database: Comparison of the Laboratory Extreme Abnormality Ratio (CLEAR) algorithm.
    Yoon D; Park MY; Choi NK; Park BJ; Kim JH; Park RW
    Clin Pharmacol Ther; 2012 Mar; 91(3):467-74. PubMed ID: 22237257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning Approach for Active Vaccine Safety Monitoring.
    Kim Y; Jang JH; Park N; Jeong NY; Lim E; Kim S; Choi NK; Yoon D
    J Korean Med Sci; 2021 Aug; 36(31):e198. PubMed ID: 34402232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Electronic Health Records to Identify Adverse Drug Events in Ambulatory Care: A Systematic Review.
    Feng C; Le D; McCoy AB
    Appl Clin Inform; 2019 Jan; 10(1):123-128. PubMed ID: 30786301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification-by-Analogy: Using Vector Representations of Implicit Relationships to Identify Plausibly Causal Drug/Side-effect Relationships.
    Mower J; Subramanian D; Shang N; Cohen T
    AMIA Annu Symp Proc; 2016; 2016():1940-1949. PubMed ID: 28269953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning from heterogeneous temporal data in electronic health records.
    Zhao J; Papapetrou P; Asker L; Boström H
    J Biomed Inform; 2017 Jan; 65():105-119. PubMed ID: 27919732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning to Predict, Detect, and Intervene Older Adults Vulnerable for Adverse Drug Events in the Emergency Department.
    Ouchi K; Lindvall C; Chai PR; Boyer EW
    J Med Toxicol; 2018 Sep; 14(3):248-252. PubMed ID: 29858745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening Electronic Health Record-Related Patient Safety Reports Using Machine Learning.
    Marella WM; Sparnon E; Finley E
    J Patient Saf; 2017 Mar; 13(1):31-36. PubMed ID: 24721977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADEPt, a semantically-enriched pipeline for extracting adverse drug events from free-text electronic health records.
    Iqbal E; Mallah R; Rhodes D; Wu H; Romero A; Chang N; Dzahini O; Pandey C; Broadbent M; Stewart R; Dobson RJB; Ibrahim ZM
    PLoS One; 2017; 12(11):e0187121. PubMed ID: 29121053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning model combining features from algorithms with different analytical methodologies to detect laboratory-event-related adverse drug reaction signals.
    Jeong E; Park N; Choi Y; Park RW; Yoon D
    PLoS One; 2018; 13(11):e0207749. PubMed ID: 30462745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review.
    Luo Y; Thompson WK; Herr TM; Zeng Z; Berendsen MA; Jonnalagadda SR; Carson MB; Starren J
    Drug Saf; 2017 Nov; 40(11):1075-1089. PubMed ID: 28643174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MADEx: A System for Detecting Medications, Adverse Drug Events, and Their Relations from Clinical Notes.
    Yang X; Bian J; Gong Y; Hogan WR; Wu Y
    Drug Saf; 2019 Jan; 42(1):123-133. PubMed ID: 30600484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.