These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26958619)

  • 1. Data analysis and other considerations concerning the study of precipitation in Al-Mg-Si alloys by Atom Probe Tomography.
    Zandbergen MW; Xu Q; Cerezo A; Smith GD
    Data Brief; 2015 Dec; 5():626-41. PubMed ID: 26958619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hardness data related to pre-ageing, natural secondary ageing, and paint bake hardening in Al-Mg-Si alloys.
    Yang Z; Liang Z; Leyvraz D; Banhart J
    Data Brief; 2019 Dec; 27():104494. PubMed ID: 31673573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Zn and Sn on the Precipitation Behavior of New Al-Mg-Si Alloys.
    Glöckel F; Uggowitzer PJ; Felfer P; Pogatscher S; Höppel HW
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31405097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the Mg/Si Ratio on Microstructure, Mechanical Properties, and Precipitation Behavior of Al⁻Mg⁻Si⁻1.0 wt %-Zn Alloys.
    Li Y; Gao G; Wang Z; Di H; Li J; Xu G
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the Quenching Rate on the Microstructure, Mechanical Properties and Paint Bake-Hardening Response of Al-Mg-Si Automotive Sheets.
    Gao G; Li Y; Wang Z; Di H; Li J; Xu G
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Property Criteria for Automotive Al-Mg-Si Sheet Alloys.
    Prillhofer R; Rank G; Berneder J; Antrekowitsch H; Uggowitzer PJ; Pogatscher S
    Materials (Basel); 2014 Jul; 7(7):5047-5068. PubMed ID: 28788119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive effect of natural pre-ageing on precipitation hardening in Al-0.44at% Mg-0.38at% Si alloy.
    Chang CS; Wieler I; Wanderka N; Banhart J
    Ultramicroscopy; 2009 Apr; 109(5):585-92. PubMed ID: 19162402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al-Cu-Li-Mg-Ag alloy.
    Gault B; de Geuser F; Bourgeois L; Gabble BM; Ringer SP; Muddle BC
    Ultramicroscopy; 2011 May; 111(6):683-9. PubMed ID: 21239117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural investigation of Sr-modified Al-15 wt%Si alloys in the range from micrometer to atomic scale.
    Timpel M; Wanderka N; Vinod Kumar GS; Banhart J
    Ultramicroscopy; 2011 May; 111(6):695-700. PubMed ID: 21232864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Ni/Si Mass Ratio and Thermomechanical Treatment on the Microstructure and Properties of Cu-Ni-Si Alloys.
    Li J; Huang G; Mi X; Peng L; Xie H; Kang Y
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31252686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of isoconcentration surface threshold values on the characteristics of needle-shaped precipitates in atom probe tomography data from an aged Al-Mg-Si alloy.
    Aruga Y; Kozuka M
    Microscopy (Oxf); 2016 Apr; 65(2):169-76. PubMed ID: 26520787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the Direct Ageing Procedure on the Age Hardening Response of Al-Mg-Si 6101 Alloy.
    Osuch P; Walkowicz M; Knych T; Dymek S
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30029477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat Treatments and Critical Quenching Rates in Additively Manufactured Al-Si-Mg Alloys.
    Hitzler L; Hafenstein S; Mendez Martin F; Clemens H; Sert E; Öchsner A; Merkel M; Werner E
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ageing Behaviour of Al-Mg-Si Alloys After Cryogenic and Room Temperature Deformation.
    Gruber B; Grabner F; Fragner W; Schökel A; Spieckermann F; Uggowitzer PJ; Pogatscher S
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys.
    Nag S; Banerjee R; Stechschulte J; Fraser HL
    J Mater Sci Mater Med; 2005 Jul; 16(7):679-85. PubMed ID: 15965601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure and Mechanical Properties of Al-(12-20)Si Bi-Material Fabricated by Selective Laser Melting.
    Zhang S; Ma P; Jia Y; Yu Z; Sokkalingam R; Shi X; Ji P; Eckert J; Prashanth KG
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31269672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of Cu addition on precipitation in Fe-Cr-Ni-Al-(Cu) model alloys.
    Höring S; Wanderka N; Banhart J
    Ultramicroscopy; 2009 Apr; 109(5):574-9. PubMed ID: 19153011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atom probe analysis of early-stage strengthening behaviour in an Al-Mg-Si-Cu alloy.
    Rometsch PA; Cao LF; Xiong XY; Muddle BC
    Ultramicroscopy; 2011 May; 111(6):690-4. PubMed ID: 21146932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of clustering in Al-Mg-Si alloy by density spectrum analysis of atom probe data.
    Wanderka N; Lazarev N; Chang CS; Banhart J
    Ultramicroscopy; 2011 May; 111(6):701-5. PubMed ID: 21159436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al-Si-Fe cast alloys.
    Basak CB; Babu NH
    Sci Rep; 2017 Jul; 7(1):5779. PubMed ID: 28720855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.