These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26958828)

  • 21. A neutron Laue diffraction study of endothiapepsin: implications for the aspartic proteinase mechanism.
    Coates L; Erskine PT; Wood SP; Myles DA; Cooper JB
    Biochemistry; 2001 Nov; 40(44):13149-57. PubMed ID: 11683623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissection of the pH dependence of inhibitor binding energetics for an aspartic protease: direct measurement of the protonation states of the catalytic aspartic acid residues.
    Xie D; Gulnik S; Collins L; Gustchina E; Suvorov L; Erickson JW
    Biochemistry; 1997 Dec; 36(51):16166-72. PubMed ID: 9405050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. X-ray structure of HIV-1 protease in situ product complex.
    Bihani S; Das A; Prashar V; Ferrer JL; Hosur MV
    Proteins; 2009 Feb; 74(3):594-602. PubMed ID: 18704947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox-linked protonation state changes in cytochrome bc1 identified by Poisson-Boltzmann electrostatics calculations.
    Klingen AR; Palsdottir H; Hunte C; Ullmann GM
    Biochim Biophys Acta; 2007 Mar; 1767(3):204-21. PubMed ID: 17349966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using the Relative Energy Gradient Method with Interacting Quantum Atoms to Determine the Reaction Mechanism and Catalytic Effects in the Peptide Hydrolysis in HIV-1 Protease.
    Thacker JCR; Vincent MA; Popelier PLA
    Chemistry; 2018 Aug; 24(43):11200-11210. PubMed ID: 29802794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrostatics Plays a Crucial Role in HIV-1 Protease Substrate Binding, Drugs Fail to Take Advantage.
    Ahsan M; Pindi C; Senapati S
    Biochemistry; 2020 Sep; 59(36):3316-3331. PubMed ID: 32822154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Room Temperature Neutron Crystallography of Drug Resistant HIV-1 Protease Uncovers Limitations of X-ray Structural Analysis at 100 K.
    Gerlits O; Keen DA; Blakeley MP; Louis JM; Weber IT; Kovalevsky A
    J Med Chem; 2017 Mar; 60(5):2018-2025. PubMed ID: 28195728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QM/MM study of the second proton transfer in the catalytic cycle of the D251N mutant of cytochrome P450cam.
    Altarsha M; Wang D; Benighaus T; Kumar D; Thiel W
    J Phys Chem B; 2009 Jul; 113(28):9577-88. PubMed ID: 19537775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr): protonation state of the ligand and active-site residues.
    Alonso H; Cummins PL; Gready JE
    J Phys Chem B; 2009 Nov; 113(44):14787-96. PubMed ID: 19827815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of the protonation state of the catalytic residues and ligands upon binding and recognition in targeted proteins of HIV-1 and influenza viruses.
    Nunthaboot N; Rungrotmongkol T; Aruksakunwong O; Hannongbua S
    Curr Pharm Des; 2013; 19(23):4276-90. PubMed ID: 23170886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dynamics simulations of the first steps of the reaction catalyzed by HIV-1 protease.
    Trylska J; Bała P; Geller M; Grochowski P
    Biophys J; 2002 Aug; 83(2):794-807. PubMed ID: 12124265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protonation states of hen egg-white lysozyme observed using D/H contrast neutron crystallography.
    Chatake T; Tanaka I; Kusaka K; Fujiwara S
    Acta Crystallogr D Struct Biol; 2022 Jun; 78(Pt 6):770-778. PubMed ID: 35647923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast and Reliable Thermodynamic Approach for Determining the Protonation State of the Asp Dyad.
    Huang J; Sun B; Yao Y; Liu J
    J Chem Inf Model; 2017 Sep; 57(9):2273-2280. PubMed ID: 28872858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photophysics of tryptophan fluorescence: link with the catalytic strategy of the citrate synthase from Thermoplasma acidophilum.
    Kurz LC; Fite B; Jean J; Park J; Erpelding T; Callis P
    Biochemistry; 2005 Feb; 44(5):1394-413. PubMed ID: 15683225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the orientation of the catalytic dyad in aspartic proteases.
    Friedman R; Caflisch A
    Proteins; 2010 May; 78(6):1575-82. PubMed ID: 20112416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomic resolution crystal structure of Sapp2p, a secreted aspartic protease from Candida parapsilosis.
    Dostál J; Pecina A; Hrušková-Heidingsfeldová O; Marečková L; Pichová I; Řezáčová P; Lepšík M; Brynda J
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2494-504. PubMed ID: 26627656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational flexibility of the catalytic Asp dyad in HIV-1 protease: An ab initio study on the free enzyme.
    Piana S; Carloni P
    Proteins; 2000 Apr; 39(1):26-36. PubMed ID: 10737924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proton transfer in carbonic anhydrase is controlled by electrostatics rather than the orientation of the acceptor.
    Riccardi D; König P; Guo H; Cui Q
    Biochemistry; 2008 Feb; 47(8):2369-78. PubMed ID: 18247480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations.
    Liao RZ; Yu JG; Himo F
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22523-7. PubMed ID: 21149684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.