These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26958866)

  • 1. Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects.
    Wen Q; Kershaw SV; Kalytchuk S; Zhovtiuk O; Reckmeier C; Vasilevskiy MI; Rogach AL
    ACS Nano; 2016 Apr; 10(4):4301-11. PubMed ID: 26958866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrocrystals of Colloidal Quantum Dots in Anthracene: Exciton Transfer and Polarized Emission.
    Soran-Erdem Z; Erdem T; Hernandez-Martinez PL; Akgul MZ; Gaponik N; Demir HV
    J Phys Chem Lett; 2015 May; 6(9):1767-72. PubMed ID: 26263347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays.
    Sergeev AA; Pavlov DV; Kuchmizhak AA; Lapine MV; Yiu WK; Dong Y; Ke N; Juodkazis S; Zhao N; Kershaw SV; Rogach AL
    Light Sci Appl; 2020; 9():16. PubMed ID: 32047625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas.
    Mutlugun E; Samarskaya O; Ozel T; Cicek N; Gaponik N; Eychmüller A; Demir HV
    Opt Express; 2010 May; 18(10):10720-30. PubMed ID: 20588924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obviating Ligand Exchange Preserves the Intact Surface of HgTe Colloidal Quantum Dots and Enhances Performance of Short Wavelength Infrared Photodetectors.
    Sergeeva KA; Hu S; Sokolova AV; Portniagin AS; Chen D; Kershaw SV; Rogach AL
    Adv Mater; 2024 Apr; 36(17):e2306518. PubMed ID: 37572367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved infrared absorption studies of the solvent-dependent vibrational relaxation dynamics of chlorine dioxide.
    Bolinger JC; Bixby TJ; Reid PJ
    J Chem Phys; 2005 Aug; 123(8):084503. PubMed ID: 16164308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles.
    Hamada M; Nakanishi S; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2010 Aug; 4(8):4445-54. PubMed ID: 20731430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination.
    Bae WK; Padilha LA; Park YS; McDaniel H; Robel I; Pietryga JM; Klimov VI
    ACS Nano; 2013 Apr; 7(4):3411-9. PubMed ID: 23521208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots.
    Geiregat P; Houtepen AJ; Sagar LK; Infante I; Zapata F; Grigel V; Allan G; Delerue C; Van Thourhout D; Hens Z
    Nat Mater; 2018 Jan; 17(1):35-42. PubMed ID: 29035357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air-Stable, Near- to Mid-Infrared Emitting Solids of PbTe/CdTe Core-Shell Colloidal quantum dots.
    Protesescu L; Zünd T; Bodnarchuk MI; Kovalenko MV
    Chemphyschem; 2016 Mar; 17(5):670-4. PubMed ID: 26676076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple exciton generation and ultrafast exciton dynamics in HgTe colloidal quantum dots.
    Al-Otaify A; Kershaw SV; Gupta S; Rogach AL; Allan G; Delerue C; Binks DJ
    Phys Chem Chem Phys; 2013 Oct; 15(39):16864-73. PubMed ID: 23999734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow Hot-Exciton Cooling and Enhanced Interparticle Excitonic Coupling in HgTe Quantum Dots.
    Fan K; Sergeeva KA; Sergeev AA; Zhang L; Chan CCS; Li Z; Zhong X; Kershaw SV; Liu J; Rogach AL; Wong KS
    ACS Nano; 2024 Jul; 18(27):18011-18021. PubMed ID: 38935537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Quantitative determination of pazufloxacin using water-soluble quantum dots as fluorescent probes].
    Ling X; Deng DW; Zhong WY; Yu JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1317-21. PubMed ID: 18800713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface ligands increase photoexcitation relaxation rates in CdSe quantum dots.
    Kilina S; Velizhanin KA; Ivanov S; Prezhdo OV; Tretiak S
    ACS Nano; 2012 Jul; 6(7):6515-24. PubMed ID: 22742432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis and photophysical characterization of luminescent CdTe quantum dots for Forster resonance energy transfer based immunosensing of staphylococcal enterotoxin B.
    Vinayaka AC; Thakur MS
    Luminescence; 2013; 28(6):827-35. PubMed ID: 23192990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-Dependent Exciton and Trap-Related Photoluminescence of CdTe Quantum Dots Embedded in a NaCl Matrix: Implication in Thermometry.
    Kalytchuk S; Zhovtiuk O; Kershaw SV; Zbořil R; Rogach AL
    Small; 2016 Jan; 12(4):466-76. PubMed ID: 26618345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots.
    Zhang W; Chen G; Wang J; Ye BC; Zhong X
    Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conduction Band Fine Structure in Colloidal HgTe Quantum Dots.
    Hudson MH; Chen M; Kamysbayev V; Janke EM; Lan X; Allan G; Delerue C; Lee B; Guyot-Sionnest P; Talapin DV
    ACS Nano; 2018 Sep; 12(9):9397-9404. PubMed ID: 30125488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution Processed Hybrid Polymer: HgTe Quantum Dot Phototransistor with High Sensitivity and Fast Infrared Response up to 2400 nm at Room Temperature.
    Dong Y; Chen M; Yiu WK; Zhu Q; Zhou G; Kershaw SV; Ke N; Wong CP; Rogach AL; Zhao N
    Adv Sci (Weinh); 2020 Jun; 7(12):2000068. PubMed ID: 32596115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.