These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 26958887)
1. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion. Garcia A; Liu CC; Cornelius F; Clarke RJ; Rasmussen HH Biophys J; 2016 Mar; 110(5):1099-109. PubMed ID: 26958887 [TBL] [Abstract][Full Text] [Related]
2. Susceptibility of β1 Na+-K+ pump subunit to glutathionylation and oxidative inhibition depends on conformational state of pump. Liu CC; Garcia A; Mahmmoud YA; Hamilton EJ; Galougahi KK; Fry NA; Figtree GA; Cornelius F; Clarke RJ; Rasmussen HH J Biol Chem; 2012 Apr; 287(15):12353-64. PubMed ID: 22354969 [TBL] [Abstract][Full Text] [Related]
3. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes. Lu FM; Hilgemann DW J Gen Physiol; 2017 Jul; 149(7):727-749. PubMed ID: 28606910 [TBL] [Abstract][Full Text] [Related]
4. Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation. Figtree GA; Liu CC; Bibert S; Hamilton EJ; Garcia A; White CN; Chia KK; Cornelius F; Geering K; Rasmussen HH Circ Res; 2009 Jul; 105(2):185-93. PubMed ID: 19542013 [TBL] [Abstract][Full Text] [Related]
5. Influence of prior Na+ pump activity on pump and Na+/Ca2+ exchange currents in mouse ventricular myocytes. Su Z; Zou A; Nonaka A; Zubair I; Sanguinetti MC; Barry WH Am J Physiol; 1998 Nov; 275(5):H1808-17. PubMed ID: 9815089 [TBL] [Abstract][Full Text] [Related]
6. Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction. Liu CC; Karimi Galougahi K; Weisbrod RM; Hansen T; Ravaie R; Nunez A; Liu YB; Fry N; Garcia A; Hamilton EJ; Sweadner KJ; Cohen RA; Figtree GA Free Radic Biol Med; 2013 Dec; 65():563-572. PubMed ID: 23816524 [TBL] [Abstract][Full Text] [Related]
7. β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification. Bundgaard H; Liu CC; Garcia A; Hamilton EJ; Huang Y; Chia KK; Hunyor SN; Figtree GA; Rasmussen HH Circulation; 2010 Dec; 122(25):2699-708. PubMed ID: 21135361 [TBL] [Abstract][Full Text] [Related]
8. Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling. Galougahi KK; Liu CC; Garcia A; Fry NA; Hamilton EJ; Rasmussen HH; Figtree GA J Physiol; 2013 Jun; 591(12):2999-3015. PubMed ID: 23587884 [TBL] [Abstract][Full Text] [Related]
9. Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity. White CN; Liu CC; Garcia A; Hamilton EJ; Chia KK; Figtree GA; Rasmussen HH J Biol Chem; 2010 Apr; 285(18):13712-20. PubMed ID: 20194511 [TBL] [Abstract][Full Text] [Related]
10. Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes. Hansen PS; Clarke RJ; Buhagiar KA; Hamilton E; Garcia A; White C; Rasmussen HH Am J Physiol Cell Physiol; 2007 Mar; 292(3):C1070-7. PubMed ID: 17020934 [TBL] [Abstract][Full Text] [Related]
11. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition. Chia KK; Liu CC; Hamilton EJ; Garcia A; Fry NA; Hannam W; Figtree GA; Rasmussen HH Am J Physiol Cell Physiol; 2015 Aug; 309(4):C239-50. PubMed ID: 26084308 [TBL] [Abstract][Full Text] [Related]
12. The nitric oxide donor sodium nitroprusside stimulates the Na+-K+ pump in isolated rabbit cardiac myocytes. William M; Vien J; Hamilton E; Garcia A; Bundgaard H; Clarke RJ; Rasmussen HH J Physiol; 2005 Jun; 565(Pt 3):815-25. PubMed ID: 15817632 [TBL] [Abstract][Full Text] [Related]
13. Is there a transient rise in sub-sarcolemmal Na and activation of Na/K pump current following activation of I(Na) in ventricular myocardium? Silverman Bd; Warley A; Miller JI; James AF; Shattock MJ Cardiovasc Res; 2003 Mar; 57(4):1025-34. PubMed ID: 12650880 [TBL] [Abstract][Full Text] [Related]
14. Measurement of Na(+)-K+ pump current in isolated rabbit ventricular myocytes using the whole-cell voltage-clamp technique. Inhibition of the pump by oxidant stress. Shattock MJ; Matsuura H Circ Res; 1993 Jan; 72(1):91-101. PubMed ID: 8380265 [TBL] [Abstract][Full Text] [Related]
15. FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its beta1 subunit. Bibert S; Liu CC; Figtree GA; Garcia A; Hamilton EJ; Marassi FM; Sweadner KJ; Cornelius F; Geering K; Rasmussen HH J Biol Chem; 2011 May; 286(21):18562-72. PubMed ID: 21454534 [TBL] [Abstract][Full Text] [Related]
16. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade. Karimi Galougahi K; Liu CC; Garcia A; Fry NA; Hamilton EJ; Figtree GA; Rasmussen HH Am J Physiol Cell Physiol; 2015 Sep; 309(5):C286-95. PubMed ID: 26063704 [TBL] [Abstract][Full Text] [Related]
17. Charge movements via the cardiac Na,K-ATPase. Gadsby DC; Nakao M; Bahinski A; Nagel G; Suenson M Acta Physiol Scand Suppl; 1992; 607():111-23. PubMed ID: 1333148 [TBL] [Abstract][Full Text] [Related]
18. Interaction of the Na+-K+ pump and Na+-Ca2+ exchange via [Na+]i in a restricted space of guinea-pig ventricular cells. Fujioka Y; Matsuoka S; Ban T; Noma A J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):457-70. PubMed ID: 9575295 [TBL] [Abstract][Full Text] [Related]
19. Ionic diffusion in voltage-clamped isolated cardiac myocytes. Implications for Na,K-pump studies. Mogul DJ; Singer DH; Ten Eick RE Biophys J; 1989 Sep; 56(3):565-77. PubMed ID: 2551408 [TBL] [Abstract][Full Text] [Related]
20. Na+ influx and Na(+)-K+ pump activation during short-term exposure of cardiac myocytes to aldosterone. Mihailidou AS; Buhagiar KA; Rasmussen HH Am J Physiol; 1998 Jan; 274(1):C175-81. PubMed ID: 9458726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]