BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 26959138)

  • 1. Translating the Low Translaminar Cribrosa Pressure Gradient Hypothesis into the Clinical Care of Glaucoma.
    Guy AH; Wiggs JL; Turalba A; Pasquale LR
    Semin Ophthalmol; 2016; 31(1-2):131-9. PubMed ID: 26959138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Influence of Translaminar Pressure Gradient and Intracranial Pressure in Glaucoma: A Review.
    Price DA; Harris A; Siesky B; Mathew S
    J Glaucoma; 2020 Feb; 29(2):141-146. PubMed ID: 31809396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current concepts of cerebrospinal fluid dynamics and the translaminar cribrosa pressure gradient: a paradigm of optic disk disease.
    Liu KC; Fleischman D; Lee AG; Killer HE; Chen JJ; Bhatti MT
    Surv Ophthalmol; 2020; 65(1):48-66. PubMed ID: 31449832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracranial and Intraocular Pressure at the Lamina Cribrosa: Gradient Effects.
    Jóhannesson G; Eklund A; Lindén C
    Curr Neurol Neurosci Rep; 2018 Apr; 18(5):25. PubMed ID: 29651628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma.
    Ren R; Wang N; Zhang X; Cui T; Jonas JB
    Graefes Arch Clin Exp Ophthalmol; 2011 Jul; 249(7):1057-63. PubMed ID: 21455776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma.
    Siaudvytyte L; Januleviciene I; Daveckaite A; Ragauskas A; Bartusis L; Kucinoviene J; Siesky B; Harris A
    Eye (Lond); 2015 Oct; 29(10):1242-50. PubMed ID: 26183286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversal of lamina cribrosa displacement after intraocular pressure reduction in open-angle glaucoma.
    Lee EJ; Kim TW; Weinreb RN; Kim H
    Ophthalmology; 2013 Mar; 120(3):553-559. PubMed ID: 23218823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between intraocular and intracranial pressure effects on the optic nerve head in vivo.
    Zhu Z; Waxman S; Wang B; Wallace J; Schmitt SE; Tyler-Kabara E; Ishikawa H; Schuman JS; Smith MA; Wollstein G; Sigal IA
    Exp Eye Res; 2021 Dec; 213():108809. PubMed ID: 34736887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does lowering of intraocular pressure protect the optic nerve?
    Mackenzie P; Cioffi G
    Surv Ophthalmol; 2008 Nov; 53 Suppl1():S39-43. PubMed ID: 19038623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study 2011.
    Jonas JB; Wang NL; Wang YX; You QS; Xie XB; Yang DY; Xu L
    Acta Ophthalmol; 2015 Feb; 93(1):e7-e13. PubMed ID: 24961652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraocular pressure correlates with optic nerve sheath diameter in patients with normal tension glaucoma.
    Abegão Pinto L; Vandewalle E; Pronk A; Stalmans I
    Graefes Arch Clin Exp Ophthalmol; 2012 Jul; 250(7):1075-80. PubMed ID: 22160505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What is glaucomatous optic neuropathy?
    Nakazawa T; Fukuchi T
    Jpn J Ophthalmol; 2020 May; 64(3):243-249. PubMed ID: 32394134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are intracranial pressure fluctuations important in glaucoma?
    Wostyn P; De Groot V; Audenaert K; De Deyn PP
    Med Hypotheses; 2011 Oct; 77(4):598-600. PubMed ID: 21767918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous venous pulsation as a barometer for translaminar pressure fluctuation.
    Chang TC; Singh K
    J Glaucoma; 2010; 19(5):347-8. PubMed ID: 20543631
    [No Abstract]   [Full Text] [Related]  

  • 15. Glymphatic stasis at the site of the lamina cribrosa as a potential mechanism underlying open-angle glaucoma.
    Wostyn P; Killer HE; De Deyn PP
    Clin Exp Ophthalmol; 2017 Jul; 45(5):539-547. PubMed ID: 28129671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure.
    Feola AJ; Myers JG; Raykin J; Mulugeta L; Nelson ES; Samuels BC; Ethier CR
    Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):1901-11. PubMed ID: 27088762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mechanism study on trans-lamina cribrosa pressure difference correlated with optic neuropathy in glaucoma].
    Liang Q; Liu X
    Zhonghua Yan Ke Za Zhi; 2014 Oct; 50(10):798-800. PubMed ID: 25547585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glaucoma as a dangerous interplay between ocular fluid and cerebrospinal fluid.
    Wostyn P
    Med Hypotheses; 2019 Jun; 127():97-99. PubMed ID: 31088658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analysis of trans-lamina cribrosa pressure difference on optic nerve head biomechanics: the Beijing Intracranial and Intraocular Pressure Study.
    Mao Y; Yang D; Li J; Liu J; Hou R; Zhang Z; Yang Y; Tian L; Weinreb RN; Wang N
    Sci China Life Sci; 2020 Dec; 63(12):1887-1894. PubMed ID: 32447541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Update in intracranial pressure evaluation methods and translaminar pressure gradient role in glaucoma.
    Siaudvytyte L; Januleviciene I; Ragauskas A; Bartusis L; Siesky B; Harris A
    Acta Ophthalmol; 2015 Feb; 93(1):9-15. PubMed ID: 25043873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.