These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 2695921)
41. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. Dong Y; Aguilar R; Xi Z; Warr E; Mongin E; Dimopoulos G PLoS Pathog; 2006 Jun; 2(6):e52. PubMed ID: 16789837 [TBL] [Abstract][Full Text] [Related]
42. Plasmodium vivax: impaired escape of Vk210 phenotype ookinetes from the midgut blood bolus of Anopheles pseudopunctipennis. Gonzalez-Ceron L; Rodriguez MH; Chavez-Munguia B; Santillan F; Nettel JA; Hernandez-Avila JE Exp Parasitol; 2007 Jan; 115(1):59-67. PubMed ID: 16875689 [TBL] [Abstract][Full Text] [Related]
43. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Luckhart S; Vodovotz Y; Cui L; Rosenberg R Proc Natl Acad Sci U S A; 1998 May; 95(10):5700-5. PubMed ID: 9576947 [TBL] [Abstract][Full Text] [Related]
44. Penetration of the mosquito midgut wall by the ookinetes of Plasmodium yoelii nigeriensis. Syafruddin ; Arakawa R; Kamimura K; Kawamoto F Parasitol Res; 1991; 77(3):230-6. PubMed ID: 2047369 [TBL] [Abstract][Full Text] [Related]
45. An improved method for the in vitro differentiation of Plasmodium falciparum gametocytes into ookinetes. Ghosh AK; Dinglasan RR; Ikadai H; Jacobs-Lorena M Malar J; 2010 Jul; 9():194. PubMed ID: 20615232 [TBL] [Abstract][Full Text] [Related]
46. Essential role of membrane-attack protein in malarial transmission to mosquito host. Kadota K; Ishino T; Matsuyama T; Chinzei Y; Yuda M Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16310-5. PubMed ID: 15520375 [TBL] [Abstract][Full Text] [Related]
47. Induced immunity against the mosquito Anopheles stephensi (Diptera: Culicidae): effects of cell fraction antigens on survival, fecundity, and plasmodium berghei (Eucoccidiida: Plasmodiidae) transmission. Almeida AP; Billingsley PF J Med Entomol; 2002 Jan; 39(1):207-14. PubMed ID: 11931258 [TBL] [Abstract][Full Text] [Related]
48. A new role for an old antimicrobial: lysozyme c-1 can function to protect malaria parasites in Anopheles mosquitoes. Kajla MK; Shi L; Li B; Luckhart S; Li J; Paskewitz SM PLoS One; 2011 May; 6(5):e19649. PubMed ID: 21573077 [TBL] [Abstract][Full Text] [Related]
49. Suppressive effect of azithromycin on Plasmodium berghei mosquito stage development and apicoplast replication. Shimizu S; Osada Y; Kanazawa T; Tanaka Y; Arai M Malar J; 2010 Mar; 9():73. PubMed ID: 20219090 [TBL] [Abstract][Full Text] [Related]
50. Formation of free oocysts in Anopheles mosquitoes injected with Plasmodium ookinetes. Haraguchi A; Takano M; Hakozaki J; Nakayama K; Nakamura S; Yoshikawa Y; Fukumoto S; Kusakisako K; Ikadai H J Vet Med Sci; 2023 Sep; 85(9):921-928. PubMed ID: 37407494 [TBL] [Abstract][Full Text] [Related]
51. 16S rRNA gene-based identification of Elizabethkingia meningoseptica (Flavobacteriales: Flavobacteriaceae) as a dominant midgut bacterium of the Asian malaria vector Anopheles stephensi (Dipteria: Culicidae) with antimicrobial activities. Ngwa CJ; Glöckner V; Abdelmohsen UR; Scheuermayer M; Fischer R; Hentschel U; Pradel G J Med Entomol; 2013 Mar; 50(2):404-14. PubMed ID: 23540130 [TBL] [Abstract][Full Text] [Related]
52. Plasmodium berghei: plasmodium perforin-like protein 5 is required for mosquito midgut invasion in Anopheles stephensi. Ecker A; Pinto SB; Baker KW; Kafatos FC; Sinden RE Exp Parasitol; 2007 Aug; 116(4):504-8. PubMed ID: 17367780 [TBL] [Abstract][Full Text] [Related]
53. The infectivity and purification of cultured Plasmodium berghei ookinetes. Munderloh UG; Kurtti TJ J Parasitol; 1987 Oct; 73(5):919-23. PubMed ID: 3309240 [TBL] [Abstract][Full Text] [Related]
54. PbGCbeta is essential for Plasmodium ookinete motility to invade midgut cell and for successful completion of parasite life cycle in mosquitoes. Hirai M; Arai M; Kawai S; Matsuoka H J Biochem; 2006 Nov; 140(5):747-57. PubMed ID: 17030505 [TBL] [Abstract][Full Text] [Related]
55. Overexpression and altered nucleocytoplasmic distribution of Anopheles ovalbumin-like SRPN10 serpins in Plasmodium-infected midgut cells. Danielli A; Barillas-Mury C; Kumar S; Kafatos FC; Loukeris TG Cell Microbiol; 2005 Feb; 7(2):181-90. PubMed ID: 15659062 [TBL] [Abstract][Full Text] [Related]
56. Lectin-binding sites in the midgut of the mosquitoes Anopheles stephensi Liston and Aedes aegypti L. (Diptera: Culicidae). Rudin W; Hecker H Parasitol Res; 1989; 75(4):268-79. PubMed ID: 2649879 [TBL] [Abstract][Full Text] [Related]
57. Resistance of early midgut stages of natural Plasmodium falciparum parasites to high temperatures in experimentally infected Anopheles gambiae (Diptera: Culicidae). Okech BA; Gouagna LC; Kabiru EW; Walczak E; Beier JC; Yan G; Githure JI J Parasitol; 2004 Aug; 90(4):764-8. PubMed ID: 15357066 [TBL] [Abstract][Full Text] [Related]
58. Comparative studies on the infectivity of Plasmodium berghei gametocytes and ookinetes for gnotobiotic and xenobiotic Anopheles stephensi. Kurtti TJ; Munderloh UG J Parasitol; 1986 Oct; 72(5):706-10. PubMed ID: 3543280 [TBL] [Abstract][Full Text] [Related]
59. The impact of variations in temperature on early Plasmodium falciparum development in Anopheles stephensi. Noden BH; Kent MD; Beier JC Parasitology; 1995 Dec; 111 ( Pt 5)():539-45. PubMed ID: 8559585 [TBL] [Abstract][Full Text] [Related]
60. Assessing Plasmodium falciparum transmission in mosquito-feeding assays using quantitative PCR. Wang CYT; McCarthy JS; Stone WJ; Bousema T; Collins KA; Bialasiewicz S Malar J; 2018 Jul; 17(1):249. PubMed ID: 29976199 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]