BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26959374)

  • 1. Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase.
    Boll M; Einsle O; Ermler U; Kroneck PM; Ullmann GM
    J Mol Microbiol Biotechnol; 2016; 26(1-3):119-37. PubMed ID: 26959374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breaking Benzene Aromaticity-Computational Insights into the Mechanism of the Tungsten-Containing Benzoyl-CoA Reductase.
    Culka M; Huwiler SG; Boll M; Ullmann GM
    J Am Chem Soc; 2017 Oct; 139(41):14488-14500. PubMed ID: 28918628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site.
    Kroneck PM
    J Biol Inorg Chem; 2016 Mar; 21(1):29-38. PubMed ID: 26790879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QM/MM Study of Tungsten-Dependent Benzoyl-Coenzyme A Reductase: Rationalization of Regioselectivity and Predication of W vs Mo Selectivity.
    Qian HX; Liao RZ
    Inorg Chem; 2018 Sep; 57(17):10667-10678. PubMed ID: 30106574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase.
    Seiffert GB; Ullmann GM; Messerschmidt A; Schink B; Kroneck PM; Einsle O
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3073-7. PubMed ID: 17360611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylene hydratase of Pelobacter acetylenicus. Molecular and spectroscopic properties of the tungsten iron-sulfur enzyme.
    Meckenstock RU; Krieger R; Ensign S; Kroneck PM; Schink B
    Eur J Biochem; 1999 Aug; 264(1):176-82. PubMed ID: 10447686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of enzymatic Birch reduction: stereochemical course and exchange reactions of benzoyl-CoA reductase.
    Thiele B; Rieder O; Golding BT; Müller M; Boll M
    J Am Chem Soc; 2008 Oct; 130(43):14050-1. PubMed ID: 18826310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key enzymes in the anaerobic aromatic metabolism catalysing Birch-like reductions.
    Boll M
    Biochim Biophys Acta; 2005 Feb; 1707(1):34-50. PubMed ID: 15721605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria.
    Löffler C; Kuntze K; Vazquez JR; Rugor A; Kung JW; Böttcher A; Boll M
    Environ Microbiol; 2011 Mar; 13(3):696-709. PubMed ID: 21087381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genes coding for the benzoyl-CoA pathway of anaerobic aromatic metabolism in the bacterium Thauera aromatica.
    Breese K; Boll M; Alt-Mörbe J; Schägger H; Fuchs G
    Eur J Biochem; 1998 Aug; 256(1):148-54. PubMed ID: 9746358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of enzymatic benzene ring reduction.
    Weinert T; Huwiler SG; Kung JW; Weidenweber S; Hellwig P; Stärk HJ; Biskup T; Weber S; Cotelesage JJ; George GN; Ermler U; Boll M
    Nat Chem Biol; 2015 Aug; 11(8):586-91. PubMed ID: 26120796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase.
    Tenbrink F; Schink B; Kroneck PM
    J Bacteriol; 2011 Mar; 193(5):1229-36. PubMed ID: 21193613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The class II benzoyl-coenzyme A reductase complex from the sulfate-reducing Desulfosarcina cetonica.
    Anselmann SEL; Löffler C; Stärk HJ; Jehmlich N; von Bergen M; Brüls T; Boll M
    Environ Microbiol; 2019 Nov; 21(11):4241-4252. PubMed ID: 31430028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural comparison of molybdenum cofactor-containing enzymes.
    Kisker C; Schindelin H; Baas D; Rétey J; Meckenstock RU; Kroneck PM
    FEMS Microbiol Rev; 1998 Dec; 22(5):503-21. PubMed ID: 9990727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxo transfer reactions mediated by bis(dithiolene)tungsten analogues of the active sites of molybdoenzymes in the DMSO reductase family: comparative reactivity of tungsten and molybdenum.
    Sung KM; Holm RH
    J Am Chem Soc; 2001 Mar; 123(9):1931-43. PubMed ID: 11456814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases.
    Kung JW; Löffler C; Dörner K; Heintz D; Gallien S; Van Dorsselaer A; Friedrich T; Boll M
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17687-92. PubMed ID: 19815533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Living on acetylene. A primordial energy source.
    Ten Brink F
    Met Ions Life Sci; 2014; 14():15-35. PubMed ID: 25416389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonaromatic products from anoxic conversion of benzoyl-CoA with benzoyl-CoA reductase and cyclohexa-1,5-diene-1-carbonyl-CoA hydratase.
    Boll M; Laempe D; Eisenreich W; Bacher A; Mittelberger T; Heinze J; Fuchs G
    J Biol Chem; 2000 Jul; 275(29):21889-95. PubMed ID: 10766750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations.
    Liao RZ; Yu JG; Himo F
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22523-7. PubMed ID: 21149684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate binding and reduction of benzoyl-CoA reductase: evidence for nucleotide-dependent conformational changes.
    Möbitz H; Friedrich T; Boll M
    Biochemistry; 2004 Feb; 43(5):1376-85. PubMed ID: 14756575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.