These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26959374)

  • 21. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination.
    Rothery RA; Weiner JH
    J Biol Inorg Chem; 2015 Mar; 20(2):349-72. PubMed ID: 25267303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible biological Birch reduction at an extremely low redox potential.
    Kung JW; Baumann S; von Bergen M; Müller M; Hagedoorn PL; Hagen WR; Boll M
    J Am Chem Soc; 2010 Jul; 132(28):9850-6. PubMed ID: 20578740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tungsten in biological systems.
    Kletzin A; Adams MW
    FEMS Microbiol Rev; 1996 Mar; 18(1):5-63. PubMed ID: 8672295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymes of the benzoyl-coenzyme A degradation pathway in the hyperthermophilic archaeon Ferroglobus placidus.
    Schmid G; René SB; Boll M
    Environ Microbiol; 2015 Sep; 17(9):3289-300. PubMed ID: 25630364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards Structural-Functional Mimics of Acetylene Hydratase: Reversible Activation of Acetylene using a Biomimetic Tungsten Complex.
    Peschel LM; Belaj F; Mösch-Zanetti NC
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):13018-21. PubMed ID: 26480335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes.
    Kuntze K; Shinoda Y; Moutakki H; McInerney MJ; Vogt C; Richnow HH; Boll M
    Environ Microbiol; 2008 Jun; 10(6):1547-56. PubMed ID: 18312395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tungsten, the surprisingly positively acting heavy metal element for prokaryotes.
    Andreesen JR; Makdessi K
    Ann N Y Acad Sci; 2008 Mar; 1125():215-29. PubMed ID: 18096847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molybdenum- and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion.
    Niks D; Hille R
    Protein Sci; 2019 Jan; 28(1):111-122. PubMed ID: 30120799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox characteristics of the tungsten DMSO reductase of Rhodobacter capsulatus.
    Hagedoorn PL; Hagen WR; Stewart LJ; Docrat A; Bailey S; Garner CD
    FEBS Lett; 2003 Dec; 555(3):606-10. PubMed ID: 14675782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.
    Pushie MJ; Cotelesage JJ; George GN
    Metallomics; 2014 Jan; 6(1):15-24. PubMed ID: 24068390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyranopterin conformation defines the function of molybdenum and tungsten enzymes.
    Rothery RA; Stein B; Solomonson M; Kirk ML; Weiner JH
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14773-8. PubMed ID: 22927383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism.
    Boll M; Schink B; Messerschmidt A; Kroneck PM
    Biol Chem; 2005 Oct; 386(10):999-1006. PubMed ID: 16218872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dimethylsulfoxide reductase: an enzyme capable of catalysis with either molybdenum or tungsten at the active site.
    Stewart LJ; Bailey S; Bennett B; Charnock JM; Garner CD; McAlpine AS
    J Mol Biol; 2000 Jun; 299(3):593-600. PubMed ID: 10835270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A catalytically versatile benzoyl-CoA reductase, key enzyme in the degradation of methyl- and halobenzoates in denitrifying bacteria.
    Tiedt O; Fuchs J; Eisenreich W; Boll M
    J Biol Chem; 2018 Jun; 293(26):10264-10274. PubMed ID: 29769313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Promotion of oxygen atom transfer in Mo and W enzymes by bicyclic forms of the pterin cofactor.
    McNamara JP; Joule JA; Hillier IH; Garner CD
    Chem Commun (Camb); 2005 Jan; (2):177-9. PubMed ID: 15724177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The benzoyl-coenzyme a reductase and 2-hydroxyacyl-coenzyme a dehydratase radical enzyme family.
    Buckel W; Kung JW; Boll M
    Chembiochem; 2014 Oct; 15(15):2188-94. PubMed ID: 25204868
    [No Abstract]   [Full Text] [Related]  

  • 37. Oxygen detoxification by dienoyl-CoA oxidase involving flavin/disulfide cofactors.
    Schmid G; Scheffen M; Willistein M; Boll M
    Mol Microbiol; 2020 Jul; 114(1):17-30. PubMed ID: 32080908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal-Containing Formate Dehydrogenases, a Personal View.
    Leimkühler S
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein.
    Rosner BM; Schink B
    J Bacteriol; 1995 Oct; 177(20):5767-72. PubMed ID: 7592321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystallization of 4-hydroxybenzoyl-CoA reductase and the structure of its electron donor ferredoxin.
    Unciuleac M; Boll M; Warkentin E; Ermler U
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):388-91. PubMed ID: 14747735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.