BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26959523)

  • 41. Anaerobic microbial dehalogenation.
    Smidt H; de Vos WM
    Annu Rev Microbiol; 2004; 58():43-73. PubMed ID: 15487929
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum.
    Morasch B; Schink B; Tebbe CC; Meckenstock RU
    Arch Microbiol; 2004 Jun; 181(6):407-17. PubMed ID: 15127183
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.
    Fuentes S; Méndez V; Aguila P; Seeger M
    Appl Microbiol Biotechnol; 2014 Jun; 98(11):4781-94. PubMed ID: 24691868
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes.
    Boll M; Löffler C; Morris BE; Kung JW
    Environ Microbiol; 2014 Mar; 16(3):612-27. PubMed ID: 24238333
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biodegradation of xenobiotics by anaerobic bacteria.
    Zhang C; Bennett GN
    Appl Microbiol Biotechnol; 2005 Jun; 67(5):600-18. PubMed ID: 15672270
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New Frontiers of Anaerobic Hydrocarbon Biodegradation in the Multi-Omics Era.
    Laczi K; Erdeiné Kis Á; Szilágyi Á; Bounedjoum N; Bodor A; Vincze GE; Kovács T; Rákhely G; Perei K
    Front Microbiol; 2020; 11():590049. PubMed ID: 33304336
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Variations in the abundance and identity of class II aromatic ring-hydroxylating dioxygenase genes in groundwater at an aromatic hydrocarbon-contaminated site.
    Taylor PM; Janssen PH
    Environ Microbiol; 2005 Jan; 7(1):140-6. PubMed ID: 15643944
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.
    Heider J; Schühle K; Frey J; Schink B
    J Mol Microbiol Biotechnol; 2016; 26(1-3):152-64. PubMed ID: 26958851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential membrane proteome analysis reveals novel proteins involved in the degradation of aromatic compounds in Geobacter metallireducens.
    Heintz D; Gallien S; Wischgoll S; Ullmann AK; Schaeffer C; Kretzschmar AK; van Dorsselaer A; Boll M
    Mol Cell Proteomics; 2009 Sep; 8(9):2159-69. PubMed ID: 19497847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methanogenic toluene metabolism: community structure and intermediates.
    Fowler SJ; Dong X; Sensen CW; Suflita JM; Gieg LM
    Environ Microbiol; 2012 Mar; 14(3):754-64. PubMed ID: 22040260
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms.
    Heider J
    Curr Opin Chem Biol; 2007 Apr; 11(2):188-94. PubMed ID: 17349816
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aromatic compounds biodegradation under anaerobic conditions and their QSBR models.
    Yang H; Jiang Z; Shi S
    Sci Total Environ; 2006 Apr; 358(1-3):265-76. PubMed ID: 15907973
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic diversity in bacterial degradation of aromatic compounds.
    Phale PS; Basu A; Majhi PD; Deveryshetty J; Vamsee-Krishna C; Shrivastava R
    OMICS; 2007; 11(3):252-79. PubMed ID: 17883338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic indicators for detecting in situ anaerobic alkylbenzene degradation.
    Beller HR
    Biodegradation; 2000; 11(2-3):125-39. PubMed ID: 11440240
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria.
    Phale PS; Malhotra H; Shah BA
    Adv Appl Microbiol; 2020; 112():1-65. PubMed ID: 32762865
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Bacterial diversity in a sequencing batch reactor treating nitrogen-containing aromatic wastewater].
    Liu XY; Wang BJ; Zhao KX; Liu L; Jiang CY; Liu SJ
    Huan Jing Ke Xue; 2008 Sep; 29(9):2564-70. PubMed ID: 19068644
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A PCR-based assay for the detection of anaerobic naphthalene degradation.
    Morris BE; Gissibl A; Kümmel S; Richnow HH; Boll M
    FEMS Microbiol Lett; 2014 May; 354(1):55-9. PubMed ID: 24654602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic biodegradation in microorganisms: a review].
    Khomenkov VG; Shevelev AB; Zhukov VG; Zagustina NA; Bezborodov AM; Popov VO
    Prikl Biokhim Mikrobiol; 2008; 44(2):133-52. PubMed ID: 18669255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteomic applications to elucidate bacterial aromatic hydrocarbon metabolic pathways.
    Kim SJ; Kweon O; Cerniglia CE
    Curr Opin Microbiol; 2009 Jun; 12(3):301-9. PubMed ID: 19414279
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Current Status of the Degradation of Aliphatic and Aromatic Petroleum Hydrocarbons by Thermophilic Microbes and Future Perspectives.
    Nzila A
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30544637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.