BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

555 related articles for article (PubMed ID: 26959704)

  • 1. Trimethylamine-N-oxide: a link between the gut microbiome, bile acid metabolism, and atherosclerosis.
    Wilson A; McLean C; Kim RB
    Curr Opin Lipidol; 2016 Apr; 27(2):148-54. PubMed ID: 26959704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota.
    Chen ML; Yi L; Zhang Y; Zhou X; Ran L; Yang J; Zhu JD; Zhang QY; Mi MT
    mBio; 2016 Apr; 7(2):e02210-15. PubMed ID: 27048804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism.
    Ding L; Chang M; Guo Y; Zhang L; Xue C; Yanagita T; Zhang T; Wang Y
    Lipids Health Dis; 2018 Dec; 17(1):286. PubMed ID: 30567573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gut Microbiota and Atherosclerosis.
    Li DY; Tang WHW
    Curr Atheroscler Rep; 2017 Aug; 19(10):39. PubMed ID: 28842845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trimethylamine
    Canyelles M; Tondo M; Cedó L; Farràs M; Escolà-Gil JC; Blanco-Vaca F
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30347638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide.
    Zhu Y; Li Q; Jiang H
    APMIS; 2020 May; 128(5):353-366. PubMed ID: 32108960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deficiency of PSRC1 accelerates atherosclerosis by increasing TMAO production via manipulating gut microbiota and flavin monooxygenase 3.
    Luo T; Guo Z; Liu D; Guo Z; Wu Q; Li Q; Lin R; Chen P; Ou C; Chen M
    Gut Microbes; 2022; 14(1):2077602. PubMed ID: 35613310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism.
    Pathak P; Helsley RN; Brown AL; Buffa JA; Choucair I; Nemet I; Gogonea CB; Gogonea V; Wang Z; Garcia-Garcia JC; Cai L; Temel R; Sangwan N; Hazen SL; Brown JM
    Am J Physiol Heart Circ Physiol; 2020 Jun; 318(6):H1474-H1486. PubMed ID: 32330092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestinal Microbiota Metabolism and Atherosclerosis.
    Liu TX; Niu HT; Zhang SY
    Chin Med J (Engl); 2015 Oct; 128(20):2805-11. PubMed ID: 26481750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation.
    Bennett BJ; de Aguiar Vallim TQ; Wang Z; Shih DM; Meng Y; Gregory J; Allayee H; Lee R; Graham M; Crooke R; Edwards PA; Hazen SL; Lusis AJ
    Cell Metab; 2013 Jan; 17(1):49-60. PubMed ID: 23312283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trimethylamine N-Oxide Generated by the Gut Microbiota Is Associated with Vascular Inflammation: New Insights into Atherosclerosis.
    Liu Y; Dai M
    Mediators Inflamm; 2020; 2020():4634172. PubMed ID: 32148438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trimethylamine N-Oxide Aggravates Liver Steatosis through Modulation of Bile Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic Fatty Liver Disease.
    Tan X; Liu Y; Long J; Chen S; Liao G; Wu S; Li C; Wang L; Ling W; Zhu H
    Mol Nutr Food Res; 2019 Sep; 63(17):e1900257. PubMed ID: 31095863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker trimethylamine N-oxide from dietary precursors.
    Petriello MC; Hoffman JB; Sunkara M; Wahlang B; Perkins JT; Morris AJ; Hennig B
    J Nutr Biochem; 2016 Jul; 33():145-53. PubMed ID: 27155921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multi-omic Association Study of Trimethylamine N-Oxide.
    Manor O; Zubair N; Conomos MP; Xu X; Rohwer JE; Krafft CE; Lovejoy JC; Magis AT
    Cell Rep; 2018 Jul; 24(4):935-946. PubMed ID: 30044989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary betaine reduces liver lipid accumulation via improvement of bile acid and trimethylamine-N-oxide metabolism in blunt-snout bream.
    Wang F; Xu J; Jakovlić I; Wang WM; Zhao YH
    Food Funct; 2019 Oct; 10(10):6675-6689. PubMed ID: 31559407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease.
    Fennema D; Phillips IR; Shephard EA
    Drug Metab Dispos; 2016 Nov; 44(11):1839-1850. PubMed ID: 27190056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FMO3 and its metabolite TMAO contribute to the formation of gallstones.
    Chen Y; Weng Z; Liu Q; Shao W; Guo W; Chen C; Jiao L; Wang Q; Lu Q; Sun H; Gu A; Hu H; Jiang Z
    Biochim Biophys Acta Mol Basis Dis; 2019 Oct; 1865(10):2576-2585. PubMed ID: 31251986
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Wang Q; Guo M; Liu Y; Xu M; Shi L; Li X; Zhao J; Zhang H; Wang G; Chen W
    Nutrients; 2022 Mar; 14(6):. PubMed ID: 35334879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of dietary phytochemicals for inhibition of trimethylamine N-oxide formation.
    Iglesias-Carres L; Hughes MD; Steele CN; Ponder MA; Davy KP; Neilson AP
    J Nutr Biochem; 2021 May; 91():108600. PubMed ID: 33577949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiology Meets Big Data: The Case of Gut Microbiota-Derived Trimethylamine.
    Falony G; Vieira-Silva S; Raes J
    Annu Rev Microbiol; 2015; 69():305-21. PubMed ID: 26274026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.