BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 26959807)

  • 1. Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites.
    Wang Y; Yang C; Pei QX; Zhang Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8272-9. PubMed ID: 26959807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces.
    Lin S; Buehler MJ
    Nanotechnology; 2013 Apr; 24(16):165702. PubMed ID: 23535514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure.
    Du FP; Yang W; Zhang F; Tang CY; Liu SP; Yin L; Law WC
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14397-403. PubMed ID: 26075677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Penetration resistance of graphene oxide/epoxy resin coating-A molecular dynamics investigation.
    Li X; Zhang Z; Wang Y
    J Mol Model; 2023 Aug; 29(9):283. PubMed ID: 37606698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites-A Review.
    Atif R; Shyha I; Inam F
    Polymers (Basel); 2016 Aug; 8(8):. PubMed ID: 30974558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of thermal interface on heat flow in carbon nanofiber composites.
    Gardea F; Naraghi M; Lagoudas D
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1061-72. PubMed ID: 24344861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites.
    Chang SW; Nair AK; Buehler MJ
    J Phys Condens Matter; 2012 Jun; 24(24):245301. PubMed ID: 22611110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Interfacial Mechanical Behaviors of Monolayer Graphene/PMMA Nanocomposites.
    Wang G; Dai Z; Liu L; Hu H; Dai Q; Zhang Z
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22554-62. PubMed ID: 27222920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Graphene Oxidation on Interaction Energy and Interfacial Thermal Conductivity of Polymer Nanocomposite: A Molecular Dynamics Approach.
    Bellussi FM; Sáenz Ezquerro C; Laspalas M; Chiminelli A
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites.
    Yoonessi M; Lebrón-Colón M; Scheiman D; Meador MA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16621-30. PubMed ID: 25215892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of elastic constants of functionalized graphene-based epoxy nanocomposites: a molecular modeling and MD simulation study.
    Yadav A; Kumar A; Sharma K; Pandey AK
    J Mol Model; 2022 May; 28(6):143. PubMed ID: 35543752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of thermal energy transport interface of hybrid graphene-carbon nanotube/polyethylene nanocomposites.
    Liu F; Liu X; Hu N; Ning H; Atobe S; Yan C; Mo F; Fu S; Zhang J; Wang Y; Mu X
    Sci Rep; 2017 Oct; 7(1):14700. PubMed ID: 29089620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions.
    Khare KS; Khabaz F; Khare R
    ACS Appl Mater Interfaces; 2014 May; 6(9):6098-110. PubMed ID: 24606164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering.
    Wang H; Gong J; Pei Y; Xu Z
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2599-603. PubMed ID: 23465732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the Influence of Surface Chemical Functionalization on Graphene Nanoplatelets-Epoxy Interfacial Shear Strength Using Molecular Dynamics.
    Al Mahmud H; Patil SU; Radue MS; Odegard GM
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior enhancement in thermal conductivity of epoxy/graphene nanocomposites through use of dimethylformamide (DMF) relative to acetone as solvent.
    Danayat S; Nayal AS; Tarannum F; Annam R; Muthaiah R; Arulanandam MK; Garg J
    MethodsX; 2023 Dec; 11():102319. PubMed ID: 37637292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization mediates heat transport in graphene nanoflakes.
    Han H; Zhang Y; Wang N; Samani MK; Ni Y; Mijbil ZY; Edwards M; Xiong S; Sääskilahti K; Murugesan M; Fu Y; Ye L; Sadeghi H; Bailey S; Kosevich YA; Lambert CJ; Liu J; Volz S
    Nat Commun; 2016 Apr; 7():11281. PubMed ID: 27125636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multiscale Investigation on the Thermal Transport in Polydimethylsiloxane Nanocomposites: Graphene vs. Borophene.
    Di Pierro A; Mortazavi B; Noori H; Rabczuk T; Fina A
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.