These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 26959838)

  • 1. Genome Sequencing and Transposon Mutagenesis of Burkholderia seminalis TC3.4.2R3 Identify Genes Contributing to Suppression of Orchid Necrosis Caused by B. gladioli.
    Araújo WL; Creason AL; Mano ET; Camargo-Neves AA; Minami SN; Chang JH; Loper JE
    Mol Plant Microbe Interact; 2016 Jun; 29(6):435-46. PubMed ID: 26959838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic traits of Burkholderia spp. associated with ecological adaptation and plant-host interaction.
    Romero-Gutiérrez KJ; Dourado MN; Garrido LM; Olchanheski LR; Mano ET; Dini-Andreote F; Valvano MA; Araújo WL
    Microbiol Res; 2020 Jun; 236():126451. PubMed ID: 32146294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of Burkholderia seminalis TC3.4.2R3 as Biocontrol Agent Against Fusarium oxysporum Evaluated by Mass Spectrometry Imaging.
    Araújo FD; Araújo WL; Eberlin MN
    J Am Soc Mass Spectrom; 2017 May; 28(5):901-907. PubMed ID: 28194740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of two emerging rice seed bacterial pathogens.
    Fory PA; Triplett L; Ballen C; Abello JF; Duitama J; Aricapa MG; Prado GA; Correa F; Hamilton J; Leach JE; Tohme J; Mosquera GM
    Phytopathology; 2014 May; 104(5):436-44. PubMed ID: 24261408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental interactions are regulated by temperature in Burkholderia seminalis TC3.4.2R3.
    Gonçalves PJRO; Hume CCD; Ferreira AJ; Tsui S; Brocchi M; Wren BW; Araujo WL
    Sci Rep; 2019 Apr; 9(1):5486. PubMed ID: 30940839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts.
    Seo YS; Lim JY; Park J; Kim S; Lee HH; Cheong H; Kim SM; Moon JS; Hwang I
    BMC Genomics; 2015 May; 16(1):349. PubMed ID: 25943361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of new regulatory genes involved in the pathogenic functions of the rice-pathogenic bacterium Burkholderia glumae.
    Melanson RA; Barphagha I; Osti S; Lelis TP; Karki HS; Chen R; Shrestha BK; Ham JH
    Microbiology (Reading); 2017 Feb; 163(2):266-279. PubMed ID: 28036242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis.
    Deng P; Wang X; Baird SM; Showmaker KC; Smith L; Peterson DG; Lu S
    Microbiologyopen; 2016 Jun; 5(3):353-69. PubMed ID: 26769582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant.
    DeShazer D; Waag DM; Fritz DL; Woods DE
    Microb Pathog; 2001 May; 30(5):253-69. PubMed ID: 11373120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative and bioinformatics analyses of pathogenic bacterial secretomes identified by mass spectrometry in Burkholderia species.
    Nguyen TT; Chon TS; Kim J; Seo YS; Heo M
    J Microbiol; 2017 Jul; 55(7):568-582. PubMed ID: 28664514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple chromosomes in Burkholderia cepacia and B. gladioli and their distribution in clinical and environmental strains of B. cepacia.
    Wigley P; Burton NF
    J Appl Microbiol; 2000 May; 88(5):914-8. PubMed ID: 10792553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant-Influenced Gene Expression in the Rice Endophyte Burkholderia kururiensis M130.
    Coutinho BG; Licastro D; Mendonça-Previato L; Cámara M; Venturi V
    Mol Plant Microbe Interact; 2015 Jan; 28(1):10-21. PubMed ID: 25494355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The eroded genome of a Psychotria leaf symbiont: hypotheses about lifestyle and interactions with its plant host.
    Carlier AL; Eberl L
    Environ Microbiol; 2012 Oct; 14(10):2757-69. PubMed ID: 22548823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the early response of the orchid, Phalaenopsis amabilis, to Erwinia chrysanthemi infection using expression profiling.
    Fu SF; Tsai TM; Chen YR; Liu CP; Haiso LJ; Syue LH; Yeh HH; Huang HJ
    Physiol Plant; 2012 Jul; 145(3):406-25. PubMed ID: 22268629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of new candidate pathogenicity factors in the xylem-invading pathogen Xanthomonas albilineans by transposon mutagenesis.
    Rott P; Fleites L; Marlow G; Royer M; Gabriel DW
    Mol Plant Microbe Interact; 2011 May; 24(5):594-605. PubMed ID: 21190440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the acid phosphatase (acpA) gene homologues in pathogenic and non-pathogenic Burkholderia spp. facilitates TnphoA mutagenesis.
    Burtnick M; Bolton A; Brett P; Watanabe D; Woods D
    Microbiology (Reading); 2001 Jan; 147(Pt 1):111-20. PubMed ID: 11160805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression-subtractive hybridisation reveals variations in gene distribution amongst the Burkholderia cepacia complex, including the presence in some strains of a genomic island containing putative polysaccharide production genes.
    Parsons YN; Banasko R; Detsika MG; Duangsonk K; Rainbow L; Hart CA; Winstanley C
    Arch Microbiol; 2003 Mar; 179(3):214-23. PubMed ID: 12610727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposing the third chromosome of Burkholderia cepacia complex strains as a virulence plasmid.
    Agnoli K; Schwager S; Uehlinger S; Vergunst A; Viteri DF; Nguyen DT; Sokol PA; Carlier A; Eberl L
    Mol Microbiol; 2012 Jan; 83(2):362-78. PubMed ID: 22171913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of suppression-subtractive hybridization to identify genes in the Burkholderia cepacia complex that are unique to Burkholderia cenocepacia.
    Bernier SP; Sokol PA
    J Bacteriol; 2005 Aug; 187(15):5278-91. PubMed ID: 16030222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of potential CepR regulated genes using a cep box motif-based search of the Burkholderia cenocepacia genome.
    Chambers CE; Lutter EI; Visser MB; Law PP; Sokol PA
    BMC Microbiol; 2006 Dec; 6():104. PubMed ID: 17187664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.