These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 26959840)
1. Automated screening of reversed-phase stationary phases for small-molecule separations using liquid chromatography with mass spectrometry. Appulage DK; Wang EH; Carroll F; Schug KA J Sep Sci; 2016 May; 39(9):1638-47. PubMed ID: 26959840 [TBL] [Abstract][Full Text] [Related]
2. Silica hydride based phases for small molecule separations using automated liquid chromatography-mass spectrometry method development. Appulage DK; Schug KA J Chromatogr A; 2017 Jul; 1507():115-123. PubMed ID: 28596010 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the properties of stationary phases for liquid chromatography in aqueous mobile phases using aromatic sulphonic acids as the test compounds. Jandera P; Bocian S; Molíková M; Buszewski B J Chromatogr A; 2009 Jan; 1216(2):237-48. PubMed ID: 19081105 [TBL] [Abstract][Full Text] [Related]
5. Origin of the selectivity differences of aromatic alcohols and amines of different Kulsing C; Nolvachai Y; Matyska MT; Pesek JJ; Topete J; Boysen RI; Hearn MTW Anal Chim Acta X; 2019 Mar; 1():100003. PubMed ID: 33186417 [TBL] [Abstract][Full Text] [Related]
6. Design of C18 Organic Phases with Multiple Embedded Polar Groups for Ultraversatile Applications with Ultrahigh Selectivity. Mallik AK; Qiu H; Oishi T; Kuwahara Y; Takafuji M; Ihara H Anal Chem; 2015 Jul; 87(13):6614-21. PubMed ID: 26041430 [TBL] [Abstract][Full Text] [Related]
7. Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry. Apfelthaler E; Bicker W; Lämmerhofer M; Sulyok M; Krska R; Lindner W; Schuhmacher R J Chromatogr A; 2008 May; 1191(1-2):171-81. PubMed ID: 18199445 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of coverage, retention patterns, and selectivity of seven liquid chromatographic methods for metabolomics. Wernisch S; Pennathur S Anal Bioanal Chem; 2016 Sep; 408(22):6079-91. PubMed ID: 27370688 [TBL] [Abstract][Full Text] [Related]
9. Investigation into reversed-phase chromatography peptide separation systems Part IV: Characterisation of mobile phase selectivity differences. Field JK; Euerby MR; Haselmann KF; Petersson P J Chromatogr A; 2021 Mar; 1641():461986. PubMed ID: 33631703 [TBL] [Abstract][Full Text] [Related]
10. Reversed phase liquid chromatography with UV absorbance and flame ionization detection using a water mobile phase and a cyano propyl stationary phase Analysis of alcohols and chlorinated hydrocarbons. Quigley WW; Ecker ST; Vahey PG; Synovec RE Talanta; 1999 Oct; 50(3):569-76. PubMed ID: 18967746 [TBL] [Abstract][Full Text] [Related]
11. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones. Aral H; Aral T; Ziyadanoğulları B; Ziyadanoğulları R Talanta; 2013 Nov; 116():155-63. PubMed ID: 24148387 [TBL] [Abstract][Full Text] [Related]
12. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase. Šatínský D; Brabcová I; Maroušková A; Chocholouš P; Solich P Anal Bioanal Chem; 2013 Jul; 405(18):6105-15. PubMed ID: 23657456 [TBL] [Abstract][Full Text] [Related]
13. Selectivity differences between alkyl and polar-modified alkyl phases in reversed phase high performance liquid chromatography. Jing LL; Jiang R; Liu P; Wang PA; Shi TY; Sun XL J Sep Sci; 2009 Jan; 32(2):212-20. PubMed ID: 19107765 [TBL] [Abstract][Full Text] [Related]
14. Selectivity of stationary phases in reversed-phase liquid chromatography based on the dispersion interactions. Turowski M; Morimoto T; Kimata K; Monde H; Ikegami T; Hosoya K; Tanaka N J Chromatogr A; 2001 Mar; 911(2):177-90. PubMed ID: 11293579 [TBL] [Abstract][Full Text] [Related]
15. Effect of ionic liquid additives to mobile phase on separation and system efficiency for HPLC of selected alkaloids on different stationary phases. Petruczynik A J Chromatogr Sci; 2012 Apr; 50(4):287-93. PubMed ID: 22368114 [TBL] [Abstract][Full Text] [Related]
16. Porous Organic Cage Embedded C18 Amide Silica Stationary Phase for High Performance Liquid Chromatography. Zhang X; Li H; Zhang L; Kong F; Fan D; Wang W Anal Sci; 2018; 34(4):445-451. PubMed ID: 29643308 [TBL] [Abstract][Full Text] [Related]
18. Phenyl ring structures as stationary phases for the high performance liquid chromatography electrospray ionization mass spectrometric analysis of basic pharmaceuticals. Needham SR; Brown PR; Duff K Rapid Commun Mass Spectrom; 1999; 13(22):2231-6. PubMed ID: 10547629 [TBL] [Abstract][Full Text] [Related]
19. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings. Bicker W; Wu J; Lämmerhofer M; Lindner W J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146 [TBL] [Abstract][Full Text] [Related]
20. An assessment of the retention behaviour of polycyclic aromatic hydrocarbons on reversed phase stationary phases--thermodynamic behaviour on C18 and phenyl-type surfaces. Kayillo S; Dennis GR; Shalliker RA J Chromatogr A; 2007 Mar; 1145(1-2):133-40. PubMed ID: 17306278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]