These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26960031)

  • 1. GyroWand: An Approach to IMU-Based Raycasting for Augmented Reality.
    Hincapié-Ramos JD; Özacar K; Irani PP; Kitamura Y
    IEEE Comput Graph Appl; 2016; 36(2):90-6. PubMed ID: 26960031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display.
    Chen X; Xu L; Wang Y; Wang H; Wang F; Zeng X; Wang Q; Egger J
    J Biomed Inform; 2015 Jun; 55():124-31. PubMed ID: 25882923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Walking-in-Place Method for Virtual Reality Using Position and Orientation Tracking.
    Lee J; Ahn SC; Hwang JI
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging Applications of Virtual Reality in Cardiovascular Medicine.
    Silva JNA; Southworth M; Raptis C; Silva J
    JACC Basic Transl Sci; 2018 Jun; 3(3):420-430. PubMed ID: 30062228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A head-mounted operating binocular for augmented reality visualization in medicine--design and initial evaluation.
    Birkfellner W; Figl M; Huber K; Watzinger F; Wanschitz F; Hummel J; Hanel R; Greimel W; Homolka P; Ewers R; Bergmann H
    IEEE Trans Med Imaging; 2002 Aug; 21(8):991-7. PubMed ID: 12472271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmenting Performance: A Systematic Review of Optical See-Through Head-Mounted Displays in Surgery.
    Doughty M; Ghugre NR; Wright GA
    J Imaging; 2022 Jul; 8(7):. PubMed ID: 35877647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Motion to Photons in 80 Microseconds: Towards Minimal Latency for Virtual and Augmented Reality.
    Lincoln P; Blate A; Singh M; Whitted T; State A; Lastra A; Fuchs H
    IEEE Trans Vis Comput Graph; 2016 Apr; 22(4):1367-76. PubMed ID: 26780797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MoSART: Mobile Spatial Augmented Reality for 3D Interaction With Tangible Objects.
    Cortes G; Marchand E; Brincin G; Lécuyer A
    Front Robot AI; 2018; 5():93. PubMed ID: 33500972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Head-Mounted Projector for Manual Precision Tasks: Performance Assessment.
    Mamone V; Ferrari V; D'Amato R; Condino S; Cattari N; Cutolo F
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Egocentric depth judgments in optical, see-through augmented reality.
    Swan JE; Jones A; Kolstad E; Livingston MA; Smallman HS
    IEEE Trans Vis Comput Graph; 2007; 13(3):429-42. PubMed ID: 17356211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Oculus Rift and HTC Vive: Feasibility for Virtual Reality-Based Exploration, Navigation, Exergaming, and Rehabilitation.
    Borrego A; Latorre J; Alcañiz M; Llorens R
    Games Health J; 2018 Jun; 7(3):151-156. PubMed ID: 29293369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmented Reality versus Virtual Reality for 3D Object Manipulation.
    Krichenbauer M; Yamamoto G; Taketom T; Sandor C; Kato H
    IEEE Trans Vis Comput Graph; 2018 Feb; 24(2):1038-1048. PubMed ID: 28129181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VoxAR: Adaptive Visualization of Volume Rendered Objects in Optical See-Through Augmented Reality.
    Boorboor S; Castellana MS; Kim Y; Zhu-Tian C; Beyer J; Pfister H; Kaufman AE
    IEEE Trans Vis Comput Graph; 2024 Oct; 30(10):6801-6812. PubMed ID: 38096098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmented Reality Glasses and Head-Mounted Display Devices in Healthcare.
    Gallos P; Georgiadis C; Liaskos J; Mantas J
    Stud Health Technol Inform; 2018; 251():82-85. PubMed ID: 29968607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation and Evaluation of a 50 kHz, 28μs Motion-to-Pose Latency Head Tracking Instrument.
    Blate A; Whitton M; Singh M; Welch G; State A; Whitted T; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):1970-1980. PubMed ID: 30843843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.
    He C; Kazanzides P; Sen HT; Kim S; Liu Y
    Sensors (Basel); 2015 Jul; 15(7):16448-65. PubMed ID: 26184191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Survey of Calibration Methods for Optical See-Through Head-Mounted Displays.
    Grubert J; Itoh Y; Moser K; Swan JE
    IEEE Trans Vis Comput Graph; 2018 Sep; 24(9):2649-2662. PubMed ID: 28961115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light Attenuation Display: Subtractive See-Through Near-Eye Display via Spatial Color Filtering.
    Itoh Y; Langlotz T; Iwai D; Kiyokawa K; Amano T
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):1951-1960. PubMed ID: 30946657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.
    Piao JC; Kim SD
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29112143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing Desktop vs. Mobile Interaction for the Creation of Pervasive Augmented Reality Experiences.
    Madeira T; Marques B; Neves P; Dias P; Santos BS
    J Imaging; 2022 Mar; 8(3):. PubMed ID: 35324634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.