BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26960259)

  • 1. Brain mechanisms associated with internally directed attention and self-generated thought.
    Benedek M; Jauk E; Beaty RE; Fink A; Koschutnig K; Neubauer AC
    Sci Rep; 2016 Mar; 6():22959. PubMed ID: 26960259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurophysiological indicators of internal attention: An fMRI-eye-tracking coregistration study.
    Ceh SM; Annerer-Walcher S; Koschutnig K; Körner C; Fink A; Benedek M
    Cortex; 2021 Oct; 143():29-46. PubMed ID: 34371378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperation between the default mode network and the frontal-parietal network in the production of an internal train of thought.
    Smallwood J; Brown K; Baird B; Schooler JW
    Brain Res; 2012 Jan; 1428():60-70. PubMed ID: 21466793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition.
    Spreng RN; Stevens WD; Chamberlain JP; Gilmore AW; Schacter DL
    Neuroimage; 2010 Oct; 53(1):303-17. PubMed ID: 20600998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study.
    Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A
    Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Top-down versus bottom-up attention differentially modulate frontal-parietal connectivity.
    Bowling JT; Friston KJ; Hopfinger JB
    Hum Brain Mapp; 2020 Mar; 41(4):928-942. PubMed ID: 31692192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic activation of frontal, parietal, and sensory regions underlying anticipatory visual spatial attention.
    Simpson GV; Weber DL; Dale CL; Pantazis D; Bressler SL; Leahy RM; Luks TL
    J Neurosci; 2011 Sep; 31(39):13880-9. PubMed ID: 21957250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control.
    Berry AS; Sarter M; Lustig C
    J Cogn Neurosci; 2017 Jul; 29(7):1212-1225. PubMed ID: 28253080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual Selective Attention P300 Source in Frontal-Parietal Lobe: ERP and fMRI Study.
    Zhang Q; Luo C; Ngetich R; Zhang J; Jin Z; Li L
    Brain Topogr; 2022 Nov; 35(5-6):636-650. PubMed ID: 36178537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale brain network connectivity underlying creativity in resting-state and task fMRI: Cooperation between default network and frontal-parietal network.
    Shi L; Sun J; Xia Y; Ren Z; Chen Q; Wei D; Yang W; Qiu J
    Biol Psychol; 2018 May; 135():102-111. PubMed ID: 29548807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous ASL perfusion fMRI investigation of higher cognition: quantification of tonic CBF changes during sustained attention and working memory tasks.
    Kim J; Whyte J; Wang J; Rao H; Tang KZ; Detre JA
    Neuroimage; 2006 May; 31(1):376-85. PubMed ID: 16427324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selecting category specific visual information: Top-down and bottom-up control of object based attention.
    Corradi-Dell'Acqua C; Fink GR; Weidner R
    Conscious Cogn; 2015 Sep; 35():330-41. PubMed ID: 25735196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.
    Meyer KN; Du F; Parks E; Hopfinger JB
    Neuropsychologia; 2018 Mar; 111():307-316. PubMed ID: 29425803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-face recognition activates a frontoparietal "mirror" network in the right hemisphere: an event-related fMRI study.
    Uddin LQ; Kaplan JT; Molnar-Szakacs I; Zaidel E; Iacoboni M
    Neuroimage; 2005 Apr; 25(3):926-35. PubMed ID: 15808992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Default network and frontoparietal control network theta connectivity supports internal attention.
    Kam JWY; Lin JJ; Solbakk AK; Endestad T; Larsson PG; Knight RT
    Nat Hum Behav; 2019 Dec; 3(12):1263-1270. PubMed ID: 31477910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.
    Sheremata SL; Somers DC; Shomstein S
    J Neurosci; 2018 Feb; 38(6):1511-1519. PubMed ID: 29311140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating when and what information in the left parietal lobe allows language rule generalization.
    Orpella J; Ripollés P; Ruzzoli M; Amengual JL; Callejas A; Martinez-Alvarez A; Soto-Faraco S; de Diego-Balaguer R
    PLoS Biol; 2020 Nov; 18(11):e3000895. PubMed ID: 33137084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.