These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26960259)

  • 21. An FMRI study of the neural systems involved in visually cued auditory top-down spatial and temporal attention.
    Li C; Chen K; Han H; Chui D; Wu J
    PLoS One; 2012; 7(11):e49948. PubMed ID: 23166800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between the neural correlates of dispositional internally directed thought and visual imagery.
    Karapanagiotidis T; Jefferies E; Smallwood J
    Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1817):20190691. PubMed ID: 33308072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ebb and flow of attention: Between-subject variation in intrinsic connectivity and cognition associated with the dynamics of ongoing experience.
    Turnbull A; Wang HT; Schooler JW; Jefferies E; Margulies DS; Smallwood J
    Neuroimage; 2019 Jan; 185():286-299. PubMed ID: 30266263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Heteromodal Word-Meaning Binding Site in the Visual Word Form Area under Top-Down Frontoparietal Control.
    Qin L; Lyu B; Shu S; Yin Y; Wang X; Ge J; Siok WT; Gao JH
    J Neurosci; 2021 Apr; 41(17):3854-3869. PubMed ID: 33687963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Echoes of the brain within the posterior cingulate cortex.
    Leech R; Braga R; Sharp DJ
    J Neurosci; 2012 Jan; 32(1):215-22. PubMed ID: 22219283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatiotemporal and sensory modality attention processing with domain-specific representations in frontoparietal areas.
    Wang L; Li C; Han Z; Wu Q; Sun L; Zhang X; Go R; Wu J; Yan T
    Cereb Cortex; 2022 Dec; 32(24):5489-5502. PubMed ID: 35136999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sex-specific neural activity when resolving cognitive interference in individuals with or without prior internalizing disorders.
    Wang Z; Jacobs RH; Marsh R; Horga G; Qiao J; Warner V; Weissman MM; Peterson BS
    Psychiatry Res Neuroimaging; 2016 Mar; 249():76-83. PubMed ID: 27000310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disrupted Intrinsic Connectivity among Default, Dorsal Attention, and Frontoparietal Control Networks in Individuals with Chronic Traumatic Brain Injury.
    Han K; Chapman SB; Krawczyk DC
    J Int Neuropsychol Soc; 2016 Feb; 22(2):263-79. PubMed ID: 26888622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A frontotemporoparietal network common to initiating and responding to joint attention bids.
    Caruana N; Brock J; Woolgar A
    Neuroimage; 2015 Mar; 108():34-46. PubMed ID: 25534111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The cross-functional role of frontoparietal regions in cognition: internal attention as the overarching mechanism.
    Lückmann HC; Jacobs HI; Sack AT
    Prog Neurobiol; 2014 May; 116():66-86. PubMed ID: 24530293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. To create or to recall? Neural mechanisms underlying the generation of creative new ideas.
    Benedek M; Jauk E; Fink A; Koschutnig K; Reishofer G; Ebner F; Neubauer AC
    Neuroimage; 2014 Mar; 88(100):125-33. PubMed ID: 24269573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential roles of inferior frontal and inferior parietal cortex in task switching: evidence from stimulus-categorization switching and response-modality switching.
    Philipp AM; Weidner R; Koch I; Fink GR
    Hum Brain Mapp; 2013 Aug; 34(8):1910-20. PubMed ID: 22438215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain network dynamics during spontaneous strategy shifts and incremental task optimization.
    Allegra M; Seyed-Allaei S; Schuck NW; Amati D; Laio A; Reverberi C
    Neuroimage; 2020 Aug; 217():116854. PubMed ID: 32334091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cortical fMRI activation produced by attentive tracking of moving targets.
    Culham JC; Brandt SA; Cavanagh P; Kanwisher NG; Dale AM; Tootell RB
    J Neurophysiol; 1998 Nov; 80(5):2657-70. PubMed ID: 9819271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The neural substrates associated with attentional resources and difficulty of concurrent processing of the two verbal tasks.
    Mizuno K; Tanaka M; Tanabe HC; Sadato N; Watanabe Y
    Neuropsychologia; 2012 Jul; 50(8):1998-2009. PubMed ID: 22571931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visual Simultaneity Judgments Activate a Bilateral Frontoparietal Timing System.
    Hanayik T; Yourganov G; Newman-Norlund R; Gibson M; Rorden C
    J Cogn Neurosci; 2019 Mar; 31(3):431-441. PubMed ID: 30457918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inferior-frontal cortex phase synchronizes with the temporal-parietal junction prior to successful change detection.
    Micheli C; Kaping D; Westendorff S; Valiante TA; Womelsdorf T
    Neuroimage; 2015 Oct; 119():417-31. PubMed ID: 26119023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic interactions in the fronto-parietal network during a manual stimulus-response compatibility task.
    Cieslik EC; Zilles K; Grefkes C; Eickhoff SB
    Neuroimage; 2011 Oct; 58(3):860-9. PubMed ID: 21708271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment.
    Bokde AL; Lopez-Bayo P; Meindl T; Pechler S; Born C; Faltraco F; Teipel SJ; Möller HJ; Hampel H
    Brain; 2006 May; 129(Pt 5):1113-24. PubMed ID: 16520329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human brain regions involved in direction discrimination.
    Cornette L; Dupont P; Rosier A; Sunaert S; Van Hecke P; Michiels J; Mortelmans L; Orban GA
    J Neurophysiol; 1998 May; 79(5):2749-65. PubMed ID: 9582242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.