BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26960974)

  • 1. Quantitative phosphotyrosine profiling of patient-derived xenografts identifies therapeutic targets in pediatric leukemia.
    Dolai S; Sia KC; Robbins AK; Zhong L; Heatley SL; Vincent TL; Hochgräfe F; Sutton R; Kurmasheva RT; Revesz T; White DL; Houghton PJ; Smith MA; Teachey DT; Daly RJ; Raftery MJ; Lock RB
    Cancer Res; 2016 May; 76(9):2766-2777. PubMed ID: 26960974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting TSLP-Induced Tyrosine Kinase Signaling Pathways in
    Sia KCS; Zhong L; Mayoh C; Norris MD; Haber M; Marshall GM; Raftery MJ; Lock RB
    Mol Cancer Res; 2020 Dec; 18(12):1767-1776. PubMed ID: 32801162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Kinase-activating Genetic Lesions to Improve Therapy of Pediatric Acute Lymphoblastic Leukemia.
    Franca R; Kuzelicki NK; Sorio C; Toffoletti E; Montecchini O; Poropat A; Rabusin M; Curci D; Paladin D; Stocco G; Decorti G
    Curr Med Chem; 2018; 25(24):2811-2825. PubMed ID: 28748759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survey of activated FLT3 signaling in leukemia.
    Gu TL; Nardone J; Wang Y; Loriaux M; Villén J; Beausoleil S; Tucker M; Kornhauser J; Ren J; MacNeill J; Gygi SP; Druker BJ; Heinrich MC; Rush J; Polakiewicz RD
    PLoS One; 2011 Apr; 6(4):e19169. PubMed ID: 21552520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic intervention in leukemias that express the activated fms-like tyrosine kinase 3 (FLT3): opportunities and challenges.
    Sternberg DW; Licht JD
    Curr Opin Hematol; 2005 Jan; 12(1):7-13. PubMed ID: 15604885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors.
    Neumann M; Coskun E; Fransecky L; Mochmann LH; Bartram I; Sartangi NF; Heesch S; Gökbuget N; Schwartz S; Brandts C; Schlee C; Haas R; Dührsen U; Griesshammer M; Döhner H; Ehninger G; Burmeister T; Blau O; Thiel E; Hoelzer D; Hofmann WK; Baldus CD
    PLoS One; 2013; 8(1):e53190. PubMed ID: 23359050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NUP214-ABL1-mediated cell proliferation in T-cell acute lymphoblastic leukemia is dependent on the LCK kinase and various interacting proteins.
    De Keersmaecker K; Porcu M; Cox L; Girardi T; Vandepoel R; de Beeck JO; Gielen O; Mentens N; Bennett KL; Hantschel O
    Haematologica; 2014 Jan; 99(1):85-93. PubMed ID: 23872305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quizartinib (AC220) is a potent second generation class III tyrosine kinase inhibitor that displays a distinct inhibition profile against mutant-FLT3, -PDGFRA and -KIT isoforms.
    Kampa-Schittenhelm KM; Heinrich MC; Akmut F; Döhner H; Döhner K; Schittenhelm MM
    Mol Cancer; 2013 Mar; 12():19. PubMed ID: 23497317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia.
    Roberts KG; Li Y; Payne-Turner D; Harvey RC; Yang YL; Pei D; McCastlain K; Ding L; Lu C; Song G; Ma J; Becksfort J; Rusch M; Chen SC; Easton J; Cheng J; Boggs K; Santiago-Morales N; Iacobucci I; Fulton RS; Wen J; Valentine M; Cheng C; Paugh SW; Devidas M; Chen IM; Reshmi S; Smith A; Hedlund E; Gupta P; Nagahawatte P; Wu G; Chen X; Yergeau D; Vadodaria B; Mulder H; Winick NJ; Larsen EC; Carroll WL; Heerema NA; Carroll AJ; Grayson G; Tasian SK; Moore AS; Keller F; Frei-Jones M; Whitlock JA; Raetz EA; White DL; Hughes TP; Guidry Auvil JM; Smith MA; Marcucci G; Bloomfield CD; Mrózek K; Kohlschmidt J; Stock W; Kornblau SM; Konopleva M; Paietta E; Pui CH; Jeha S; Relling MV; Evans WE; Gerhard DS; Gastier-Foster JM; Mardis E; Wilson RK; Loh ML; Downing JR; Hunger SP; Willman CL; Zhang J; Mullighan CG
    N Engl J Med; 2014 Sep; 371(11):1005-15. PubMed ID: 25207766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. JAK mutations in high-risk childhood acute lymphoblastic leukemia.
    Mullighan CG; Zhang J; Harvey RC; Collins-Underwood JR; Schulman BA; Phillips LA; Tasian SK; Loh ML; Su X; Liu W; Devidas M; Atlas SR; Chen IM; Clifford RJ; Gerhard DS; Carroll WL; Reaman GH; Smith M; Downing JR; Hunger SP; Willman CL
    Proc Natl Acad Sci U S A; 2009 Jun; 106(23):9414-8. PubMed ID: 19470474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Detection of activating mutations in RAS/RAF/MEK/ERK and JAK/STAT signaling pathways].
    Zarubina KI; Parovichnikova EN; Surin VL; Pshenichnikova OS; Gavrilina OA; Isinova GA; Troitskaia VV; Sokolov AN; Gal'tseva IV; Kapranov NM; Davydova IO; Obukhova TN; Sudarikov AB; Savchenko VG
    Ter Arkh; 2020 Sep; 92(7):31-42. PubMed ID: 33346443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the in vitro and in vivo efficacy of the JAK inhibitor AZD1480 against JAK-mutated acute lymphoblastic leukemia.
    Suryani S; Bracken LS; Harvey RC; Sia KC; Carol H; Chen IM; Evans K; Dietrich PA; Roberts KG; Kurmasheva RT; Billups CA; Mullighan CG; Willman CL; Loh ML; Hunger SP; Houghton PJ; Smith MA; Lock RB
    Mol Cancer Ther; 2015 Feb; 14(2):364-74. PubMed ID: 25504635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robust error model for iTRAQ quantification reveals divergent signaling between oncogenic FLT3 mutants in acute myeloid leukemia.
    Zhang Y; Askenazi M; Jiang J; Luckey CJ; Griffin JD; Marto JA
    Mol Cell Proteomics; 2010 May; 9(5):780-90. PubMed ID: 20019052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a 5-plex SILAC method tuned for the quantitation of tyrosine phosphorylation dynamics.
    Tzouros M; Golling S; Avila D; Lamerz J; Berrera M; Ebeling M; Langen H; Augustin A
    Mol Cell Proteomics; 2013 Nov; 12(11):3339-49. PubMed ID: 23882028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of small molecule Flt3 receptor protein-tyrosine kinase inhibitors in the treatment of Flt3-positive acute myelogenous leukemias.
    Roskoski R
    Pharmacol Res; 2020 May; 155():104725. PubMed ID: 32109580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Therapeutic strategies for childhood high-risk acute lymphoblastic leukemia].
    Lu XT
    Beijing Da Xue Xue Bao Yi Xue Ban; 2013 Apr; 45(2):327-32. PubMed ID: 23591360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project.
    Loh ML; Zhang J; Harvey RC; Roberts K; Payne-Turner D; Kang H; Wu G; Chen X; Becksfort J; Edmonson M; Buetow KH; Carroll WL; Chen IM; Wood B; Borowitz MJ; Devidas M; Gerhard DS; Bowman P; Larsen E; Winick N; Raetz E; Smith M; Downing JR; Willman CL; Mullighan CG; Hunger SP
    Blood; 2013 Jan; 121(3):485-8. PubMed ID: 23212523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PDX models reflect the proteome landscape of pediatric acute lymphoblastic leukemia but divert in select pathways.
    Uzozie AC; Ergin EK; Rolf N; Tsui J; Lorentzian A; Weng SSH; Nierves L; Smith TG; Lim CJ; Maxwell CA; Reid GSD; Lange PF
    J Exp Clin Cancer Res; 2021 Mar; 40(1):96. PubMed ID: 33722259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of SRC oncogenic signaling in colorectal cancer by stable isotope labeling with heavy amino acids in mouse xenografts.
    Sirvent A; Vigy O; Orsetti B; Urbach S; Roche S
    Mol Cell Proteomics; 2012 Dec; 11(12):1937-50. PubMed ID: 23023324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Clinical and Molecular Characteristics of FLT3 Mutations in Chinese De Novo Adolescent and Adult Acute Lymphoblastic Leukemia Patients.
    Shen Z; Chu XL; Wang RX; Li JL; Liu MY; Xie YY; Wang C; Han R; Yu JQ; Wang J; Tao T; Shen HJ; Chen SN; Wu DP; Qiu QC; Liu SB; Xue SL
    Clin Lymphoma Myeloma Leuk; 2020 Jun; 20(6):e259-e269. PubMed ID: 32173273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.