BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26961507)

  • 1. Measurement of breast-tissue x-ray attenuation by spectral mammography: solid lesions.
    Fredenberg E; Kilburn-Toppin F; Willsher P; Moa E; Danielsson M; Dance DR; Young KC; Wallis MG
    Phys Med Biol; 2016 Apr; 61(7):2595-612. PubMed ID: 26961507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of breast-tissue x-ray attenuation by spectral imaging: fresh and fixed normal and malignant tissue.
    Fredenberg E; Willsher P; Moa E; Dance DR; Young KC; Wallis MG
    Phys Med Biol; 2018 Nov; 63(23):235003. PubMed ID: 30465547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of breast-tissue x-ray attenuation by spectral mammography: first results on cyst fluid.
    Fredenberg E; Dance DR; Willsher P; Moa E; von Tiedemann M; Young KC; Wallis MG
    Phys Med Biol; 2013 Dec; 58(24):8609-20. PubMed ID: 24254377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Cystic Lesions by Spectral Mammography: Results of a Clinical Pilot Study.
    Erhard K; Kilburn-Toppin F; Willsher P; Moa E; Fredenberg E; Wieberneit N; Buelow T; Wallis MG
    Invest Radiol; 2016 May; 51(5):340-7. PubMed ID: 26741891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breast-density measurement using photon-counting spectral mammography.
    Johansson H; von Tiedemann M; Erhard K; Heese H; Ding H; Molloi S; Fredenberg E
    Med Phys; 2017 Jul; 44(7):3579-3593. PubMed ID: 28421611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using convolutional neural networks to discriminate between cysts and masses in Monte Carlo-simulated dual-energy mammography.
    Makeev A; Toner B; Qian M; Badal A; Glick SJ
    Med Phys; 2021 Aug; 48(8):4648-4655. PubMed ID: 34050965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation study of a quasi-monochromatic beam for x-ray computed mammotomography.
    McKinley RL; Tornai MP; Samei E; Bradshaw ML
    Med Phys; 2004 Apr; 31(4):800-13. PubMed ID: 15124997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the feasibility of classifying breast microcalcifications using photon-counting spectral mammography: A simulation study.
    Ghammraoui B; Glick SJ
    Med Phys; 2017 Jun; 44(6):2304-2311. PubMed ID: 28332199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of breast lesion compositions using low-dose spectral mammography: A feasibility study.
    Ding H; Sennung D; Cho HM; Molloi S
    Med Phys; 2016 Oct; 43(10):5527. PubMed ID: 27782705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.
    Kooi T; van Ginneken B; Karssemeijer N; den Heeten A
    Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional breast imaging using a dual-energy mammography protocol.
    Laidevant AD; Malkov S; Flowers CI; Kerlikowske K; Shepherd JA
    Med Phys; 2010 Jan; 37(1):164-74. PubMed ID: 20175478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration phantoms for accurate water and lipid density quantification using dual energy mammography.
    Cho HM; Ding H; Kumar N; Sennung D; Molloi S
    Phys Med Biol; 2017 Jun; 62(11):4589-4603. PubMed ID: 28440226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray characterisation of normal and neoplastic breast tissues.
    Johns PC; Yaffe MJ
    Phys Med Biol; 1987 Jun; 32(6):675-95. PubMed ID: 3039542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging.
    Cho HM; Barber WC; Ding H; Iwanczyk JS; Molloi S
    Med Phys; 2014 Sep; 41(9):091903. PubMed ID: 25186390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of mammography radiation dose values obtained from direct incident air kerma measurements with values from measured X-ray spectral data.
    Assiamah M; Nam TL; Keddy RJ
    Appl Radiat Isot; 2005 Apr; 62(4):551-60. PubMed ID: 15701409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuation of monochromatic X-rays by normal and abnormal breast tissues.
    Carroll FE; Waters JW; Andrews WW; Price RR; Pickens DR; Willcott R; Tompkins P; Roos C; Page D; Reed G
    Invest Radiol; 1994 Mar; 29(3):266-72. PubMed ID: 8175299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray scattering from human breast tissues and breast-equivalent materials.
    Poletti ME; Gonçalves D; Mazzaro I
    Phys Med Biol; 2002 Jan; 47(1):47-63. PubMed ID: 11814227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of breast microcalcifications with GaAs photon-counting spectral mammography using an inverse problem approach.
    Ghammraoui B; Bader S; Thuering T; Glick SJ
    Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36716475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrast-enhanced spectral mammography with a photon-counting detector.
    Fredenberg E; Hemmendorff M; Cederström B; Aslund M; Danielsson M
    Med Phys; 2010 May; 37(5):2017-29. PubMed ID: 20527535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical study on phase-contrast mammography with Thomson-scattering x-ray sources.
    De Caro L; Giannini C; Bellotti R; Tangaro S
    Med Phys; 2009 Oct; 36(10):4644-53. PubMed ID: 19928096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.