These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26961512)

  • 1. Computational modeling of the arterial wall based on layer-specific histological data.
    Jin T; Stanciulescu I
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1479-1494. PubMed ID: 26961512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational model for understanding the micro-mechanics of collagen fiber network in the tunica adventitia.
    Ayyalasomayajula V; Pierrat B; Badel P
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1507-1528. PubMed ID: 31065952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmural variation in elastin fiber orientation distribution in the arterial wall.
    Yu X; Wang Y; Zhang Y
    J Mech Behav Biomed Mater; 2018 Jan; 77():745-753. PubMed ID: 28838859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of fiber dispersion on the mechanical response of aortic tissues in health and disease: a computational study.
    Niestrawska JA; Ch Haspinger D; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(2):99-112. PubMed ID: 29436874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pressure on arterial failure.
    Khamdaengyodtai P; Vafai K; Sakulchangsatjatai P; Terdtoon P
    J Biomech; 2012 Oct; 45(15):2577-88. PubMed ID: 22980577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layer-specific fiber distribution in arterial tissue modeled as a constrained mixture.
    Vander Linden K; Ghasemi M; Maes L; Vastmans J; Famaey N
    Int J Numer Method Biomed Eng; 2023 Apr; 39(4):e3608. PubMed ID: 35490334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On arterial fiber dispersion and auxetic effect.
    Volokh KY
    J Biomech; 2017 Aug; 61():123-130. PubMed ID: 28774466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of fibrous biomaterials with randomly distributed fiber network structure.
    Jin T; Stanciulescu I
    Biomech Model Mechanobiol; 2016 Aug; 15(4):817-30. PubMed ID: 26342926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations.
    Gasser TC; Ogden RW; Holzapfel GA
    J R Soc Interface; 2006 Feb; 3(6):15-35. PubMed ID: 16849214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution.
    Driessen NJ; Bouten CV; Baaijens FP
    J Biomech Eng; 2005 Jun; 127(3):494-503. PubMed ID: 16060356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wrinkling instabilities for biologically relevant fiber-reinforced composite materials with a case study of Neo-Hookean/Ogden-Gasser-Holzapfel bilayer.
    Nguyen N; Nath N; Deseri L; Tzeng E; Velankar SS; Pocivavsek L
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2375-2395. PubMed ID: 32535739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling non-symmetric collagen fibre dispersion in arterial walls.
    Holzapfel GA; Niestrawska JA; Ogden RW; Reinisch AJ; Schriefl AJ
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25878125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modelling of fracture in human arteries.
    Ferrara A; Pandolfi A
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):553-67. PubMed ID: 19230149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta.
    Martufi G; Gasser TC
    J Biomech; 2011 Sep; 44(14):2544-50. PubMed ID: 21862020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxed incremental variational approach for the modeling of damage-induced stress hysteresis in arterial walls.
    Schmidt T; Balzani D
    J Mech Behav Biomed Mater; 2016 May; 58():149-162. PubMed ID: 26341795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modelling.
    Niestrawska JA; Viertler C; Regitnig P; Cohnert TU; Sommer G; Holzapfel GA
    J R Soc Interface; 2016 Nov; 13(124):. PubMed ID: 27903785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.
    Balzani D; Deparis S; Fausten S; Forti D; Heinlein A; Klawonn A; Quarteroni A; Rheinbach O; Schröder J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26509253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective enzymatic removal of elastin and collagen from human abdominal aortas: uniaxial mechanical response and constitutive modeling.
    Schriefl AJ; Schmidt T; Balzani D; Sommer G; Holzapfel GA
    Acta Biomater; 2015 Apr; 17():125-36. PubMed ID: 25623592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.