BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 26961855)

  • 1. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling.
    Cheng K; Gu B; Liu X; Kang J; Zhang Q; Wang Y
    Angew Chem Int Ed Engl; 2016 Apr; 55(15):4725-8. PubMed ID: 26961855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins
    Liu X; Zhou W; Yang Y; Cheng K; Kang J; Zhang L; Zhang G; Min X; Zhang Q; Wang Y
    Chem Sci; 2018 May; 9(20):4708-4718. PubMed ID: 29899966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectivity Control by Relay Catalysis in CO and CO
    Cheng K; Li Y; Kang J; Zhang Q; Wang Y
    Acc Chem Res; 2024 Mar; 57(5):714-725. PubMed ID: 38349801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective conversion of syngas to light olefins.
    Jiao F; Li J; Pan X; Xiao J; Li H; Ma H; Wei M; Pan Y; Zhou Z; Li M; Miao S; Li J; Zhu Y; Xiao D; He T; Yang J; Qi F; Fu Q; Bao X
    Science; 2016 Mar; 351(6277):1065-8. PubMed ID: 26941314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Transformation of CO
    Dang S; Li S; Yang C; Chen X; Li X; Zhong L; Gao P; Sun Y
    ChemSusChem; 2019 Aug; 12(15):3582-3591. PubMed ID: 31197936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO
    Zhou W; Cheng K; Kang J; Zhou C; Subramanian V; Zhang Q; Wang Y
    Chem Soc Rev; 2019 Jun; 48(12):3193-3228. PubMed ID: 31106785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins.
    Tan L; Wang F; Zhang P; Suzuki Y; Wu Y; Chen J; Yang G; Tsubaki N
    Chem Sci; 2020 Mar; 11(16):4097-4105. PubMed ID: 34122875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Zr loading into In
    Portillo A; Ateka A; Ereña J; Bilbao J; Aguayo AT
    J Environ Manage; 2022 Aug; 316():115329. PubMed ID: 35658264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt carbide nanoprisms for direct production of lower olefins from syngas.
    Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H
    Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO
    Su J; Zhou H; Liu S; Wang C; Jiao W; Wang Y; Liu C; Ye Y; Zhang L; Zhao Y; Liu H; Wang D; Yang W; Xie Z; He M
    Nat Commun; 2019 Mar; 10(1):1297. PubMed ID: 30899003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in Co
    Yu F; Lin T; An Y; Gong K; Wang X; Sun Y; Zhong L
    Chem Commun (Camb); 2022 Aug; 58(70):9712-9727. PubMed ID: 35972448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa
    Liu X; Wang M; Zhou C; Zhou W; Cheng K; Kang J; Zhang Q; Deng W; Wang Y
    Chem Commun (Camb); 2018 Jan; 54(2):140-143. PubMed ID: 29210376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relay Catalysis for Highly Selective Conversion of Methanol to Ethylene in Syngas.
    Chen K; Wang F; Wang Y; Zhang F; Huang X; Kang J; Zhang Q; Wang Y
    JACS Au; 2023 Oct; 3(10):2894-2904. PubMed ID: 37885567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity.
    Lin T; Yu F; An Y; Qin T; Li L; Gong K; Zhong L; Sun Y
    Acc Chem Res; 2021 Apr; 54(8):1961-1971. PubMed ID: 33599477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of intermediate Co
    Liu S; Sun B; Zhang Y; Li J; Resasco DE; Nie L; Wang L
    Chem Commun (Camb); 2019 Jun; 55(46):6595-6598. PubMed ID: 31119229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress in Methanol-to-Olefins (MTO) Catalysts.
    Yang M; Fan D; Wei Y; Tian P; Liu Z
    Adv Mater; 2019 Dec; 31(50):e1902181. PubMed ID: 31496008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research Progress of Catalysis for Low-Carbon Olefins Synthesis Through Hydrogenation of CO₂.
    Wang Q; Chen Y; Li Z
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3162-3172. PubMed ID: 30744739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxide-Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer-Tropsch Synthesis.
    Pan X; Jiao F; Miao D; Bao X
    Chem Rev; 2021 Jun; 121(11):6588-6609. PubMed ID: 34032417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether.
    Zhou W; Kang J; Cheng K; He S; Shi J; Zhou C; Zhang Q; Chen J; Peng L; Chen M; Wang Y
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):12012-12016. PubMed ID: 30063282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Conversion of Syngas to Light Olefins over a ZnCrO
    Huang Y; Ma H; Xu Z; Qian W; Zhang H; Ying W
    ACS Omega; 2021 Apr; 6(16):10953-10962. PubMed ID: 34056248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.