BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26961882)

  • 1. Rapidly Translated Polypeptides Are Preferred Substrates for Cotranslational Protein Degradation.
    Ha SW; Ju D; Hao W; Xie Y
    J Biol Chem; 2016 Apr; 291(18):9827-34. PubMed ID: 26961882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear import factor Srp1 and its associated protein Sts1 couple ribosome-bound nascent polypeptides to proteasomes for cotranslational degradation.
    Ha SW; Ju D; Xie Y
    J Biol Chem; 2014 Jan; 289(5):2701-10. PubMed ID: 24338021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homeostatic regulation of ribosomal proteins by ubiquitin-independent cotranslational degradation.
    Ju D; Li L; Xie Y
    Proc Natl Acad Sci U S A; 2023 Jul; 120(30):e2306152120. PubMed ID: 37459537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis.
    Willmund F; del Alamo M; Pechmann S; Chen T; Albanèse V; Dammer EB; Peng J; Frydman J
    Cell; 2013 Jan; 152(1-2):196-209. PubMed ID: 23332755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting and measuring cotranslational protein degradation in vivo.
    Turner GC; Varshavsky A
    Science; 2000 Sep; 289(5487):2117-20. PubMed ID: 11000112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquitylation-independent cotranslational degradation of dihydrofolate reductase and ubiquitin.
    Ju D; Wu S; Li L; Xie Y
    Biochem Biophys Res Commun; 2024 Apr; 702():149651. PubMed ID: 38350414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling.
    Shiber A; Döring K; Friedrich U; Klann K; Merker D; Zedan M; Tippmann F; Kramer G; Bukau B
    Nature; 2018 Sep; 561(7722):268-272. PubMed ID: 30158700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of cotranslational ubiquitination and quality control at the ribosome.
    Duttler S; Pechmann S; Frydman J
    Mol Cell; 2013 May; 50(3):379-93. PubMed ID: 23583075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nascent Polypeptide Domain Topology and Elongation Rate Direct the Cotranslational Hierarchy of Hsp70 and TRiC/CCT.
    Stein KC; Kriel A; Frydman J
    Mol Cell; 2019 Sep; 75(6):1117-1130.e5. PubMed ID: 31400849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding stabilities of ribosome-bound nascent polypeptides probed by mass spectrometry.
    Tan R; Hoare M; Welle KA; Swovick K; Hryhorenko JR; Ghaemmaghami S
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2303167120. PubMed ID: 37552756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes.
    del Alamo M; Hogan DJ; Pechmann S; Albanese V; Brown PO; Frydman J
    PLoS Biol; 2011 Jul; 9(7):e1001100. PubMed ID: 21765803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rqc1 and Ltn1 Prevent C-terminal Alanine-Threonine Tail (CAT-tail)-induced Protein Aggregation by Efficient Recruitment of Cdc48 on Stalled 60S Subunits.
    Defenouillère Q; Zhang E; Namane A; Mouaikel J; Jacquier A; Fromont-Racine M
    J Biol Chem; 2016 Jun; 291(23):12245-53. PubMed ID: 27129255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. False start: cotranslational protein ubiquitination and cytosolic protein quality control.
    Comyn SA; Chan GT; Mayor T
    J Proteomics; 2014 Apr; 100():92-101. PubMed ID: 23954725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cotranslational signal-independent SRP preloading during membrane targeting.
    Chartron JW; Hunt KC; Frydman J
    Nature; 2016 Aug; 536(7615):224-8. PubMed ID: 27487213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance.
    Defenouillère Q; Fromont-Racine M
    Curr Genet; 2017 Dec; 63(6):997-1005. PubMed ID: 28528489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the influence of codon translation rates on cotranslational protein folding.
    O'Brien EP; Ciryam P; Vendruscolo M; Dobson CM
    Acc Chem Res; 2014 May; 47(5):1536-44. PubMed ID: 24784899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for interaction of a cotranslational chaperone with the eukaryotic ribosome.
    Zhang Y; Ma C; Yuan Y; Zhu J; Li N; Chen C; Wu S; Yu L; Lei J; Gao N
    Nat Struct Mol Biol; 2014 Dec; 21(12):1042-6. PubMed ID: 25362488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Hsp70 homolog Ssb affects ribosome biogenesis via the TORC1-Sch9 signaling pathway.
    Mudholkar K; Fitzke E; Prinz C; Mayer MP; Rospert S
    Nat Commun; 2017 Oct; 8(1):937. PubMed ID: 29038496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large protein complex interfaces have evolved to promote cotranslational assembly.
    Badonyi M; Marsh JA
    Elife; 2022 Jul; 11():. PubMed ID: 35899946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ribosome receptors Mrx15 and Mba1 jointly organize cotranslational insertion and protein biogenesis in mitochondria.
    Möller-Hergt BV; Carlström A; Stephan K; Imhof A; Ott M
    Mol Biol Cell; 2018 Oct; 29(20):2386-2396. PubMed ID: 30091672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.