BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26962848)

  • 1. Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells.
    Habibul N; Hu Y; Wang YK; Chen W; Yu HQ; Sheng GP
    Environ Sci Technol; 2016 Apr; 50(7):3882-9. PubMed ID: 26962848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production.
    Guan CY; Tseng YH; Tsang DCW; Hu A; Yu CP
    J Hazard Mater; 2019 Mar; 365():137-145. PubMed ID: 30419460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stratified chemical and microbial characteristics between anode and cathode after long-term operation of plant microbial fuel cells for remediation of metal contaminated soils.
    Guan CY; Hu A; Yu CP
    Sci Total Environ; 2019 Jun; 670():585-594. PubMed ID: 30909036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Cr(VI) reduction and electricity generation in Plant-Sediment Microbial Fuel Cells (P-SMFCs): Synthesis of non-bonding Co
    Cheng C; Hu Y; Shao S; Yu J; Zhou W; Cheng J; Chen Y; Chen S; Chen J; Zhang L
    Environ Pollut; 2019 Apr; 247():647-657. PubMed ID: 30711820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.
    Song TS; Jin Y; Bao J; Kang D; Xie J
    J Hazard Mater; 2016 Nov; 317():73-80. PubMed ID: 27262274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cr(VI) removal from soils and groundwater using an integrated adsorption and microbial fuel cell (A-MFC) technology.
    Zhang T; Hu L; Zhang M; Jiang M; Fiedler H; Bai W; Wang X; Zhang D; Li Z
    Environ Pollut; 2019 Sep; 252(Pt B):1399-1405. PubMed ID: 31260939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Cr (VI) concentration on Cr (VI) reduction and electricity production in microbial fuel cell.
    Zhang X; Liu Y; Li C
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):54170-54176. PubMed ID: 34405326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Performance of a Microbial Fuel Cell with a Capacitive Bioanode and Removal of Cr (VI) Using the Intermittent Operation.
    Wang Y; Wen Q; Chen Y; Yin J; Duan T
    Appl Biochem Biotechnol; 2016 Dec; 180(7):1372-1385. PubMed ID: 27557903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: column test.
    Boni MR; Sbaffoni S
    J Hazard Mater; 2009 Jul; 166(2-3):1087-95. PubMed ID: 19153005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological chromium(VI) reduction in the cathode of a microbial fuel cell.
    Tandukar M; Huber SJ; Onodera T; Pavlostathis SG
    Environ Sci Technol; 2009 Nov; 43(21):8159-65. PubMed ID: 19924938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of plants on the removal of hexavalent chromium in wetland sediments.
    Xu S; Jaffé PR
    J Environ Qual; 2006; 35(1):334-41. PubMed ID: 16397109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.
    Gangadharan P; Nambi IM
    Water Sci Technol; 2015; 71(3):353-8. PubMed ID: 25714633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon.
    Hsu NH; Wang SL; Liao YH; Huang ST; Tzou YM; Huang YM
    J Hazard Mater; 2009 Nov; 171(1-3):1066-70. PubMed ID: 19619940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies.
    Zhang X; Fu W; Yin Y; Chen Z; Qiu R; Simonnot MO; Wang X
    Bioresour Technol; 2018 Nov; 268():149-157. PubMed ID: 30077171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater.
    Singh SK; Bansal A; Jha MK; Dey A
    Bioresour Technol; 2012 Jan; 104():257-65. PubMed ID: 22154744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved chromium reduction and removal from wastewater in continuous flow bioelectrochemical systems.
    Gajaraj S; Sun X; Zhang C; Hu Z
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):31945-31955. PubMed ID: 31493075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Remediation of chromium (VI) contaminated soils using permeable reactive composite electrodes technology].
    Fu RB; Liu F; Ma J; Zhang CB; He GF
    Huan Jing Ke Xue; 2012 Jan; 33(1):280-5. PubMed ID: 22452223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.
    Huang L; Chen J; Quan X; Yang F
    Bioprocess Biosyst Eng; 2010 Oct; 33(8):937-45. PubMed ID: 20217142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes.
    Dima JB; Sequeiros C; Zaritzky NE
    Chemosphere; 2015 Dec; 141():100-11. PubMed ID: 26151484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.