BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26962952)

  • 21. Surgical scissors extension adds the 7th axis of force feedback to the Freedom 6S.
    Powers MJ; Sinclair IP; Brouwer I; Laroche D
    Stud Health Technol Inform; 2007; 125():361-6. PubMed ID: 17377304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of environmental force for the haptic interface of robotic surgery.
    Son HI; Bhattacharjee T; Lee DY
    Int J Med Robot; 2010 Jun; 6(2):221-30. PubMed ID: 20506442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A haptic pedal for surgery assistance.
    Díaz I; Gil JJ; Louredo M
    Comput Methods Programs Biomed; 2014 Sep; 116(2):97-104. PubMed ID: 24210869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.
    Lee DH; Choi J; Park JW; Bach DJ; Song SJ; Kim YH; Jo Y; Sun K
    ASAIO J; 2009; 55(1):83-5. PubMed ID: 19092664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Haptic-Assisted Target Acquisition in a Visual Point-and-Click Task for Computer Users with Motion Impairments.
    Asque CT; Day AM; Laycock SD
    IEEE Trans Haptics; 2012; 5(2):120-30. PubMed ID: 26964068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A one-DOF freehand haptic device for robotic tele-echography.
    Marchal M; Troccaz J
    Stud Health Technol Inform; 2004; 98():231-3. PubMed ID: 15544277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robot-based tele-echography: the TER system.
    Vilchis A; Masuda K; Troccaz J; Cinquin P
    Stud Health Technol Inform; 2003; 95():212-7. PubMed ID: 14663989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and Evaluation of a Novel Haptic Interface for Endoscopic Simulation.
    Samur E; Flaction L; Bleuler H
    IEEE Trans Haptics; 2012; 5(4):301-11. PubMed ID: 26964128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new haptic interface for VR medical training.
    Riener R; Burgkart R
    Stud Health Technol Inform; 2002; 85():388-94. PubMed ID: 15458120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time haptic interface for VR colonoscopy simulation.
    Ilic D; Moix T; Mc Cullough N; Duratti L; Vecerina I; Bleuler H
    Stud Health Technol Inform; 2005; 111():208-12. PubMed ID: 15718729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design, Analysis, and Evaluation of a Remotely Actuated MRI-Compatible Neurosurgical Robot.
    Wang X; Cheng SS; Desai JP
    IEEE Robot Autom Lett; 2018 Jul; 3(3):2144-2151. PubMed ID: 30386822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Development of real-world haptic technology].
    Ohnishi K; Shimono T; Natori K
    Gan To Kagaku Ryoho; 2012 Jul; 39(7):1035-8. PubMed ID: 22790037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A haptic device for guide wire in interventional radiology procedures.
    Moix T; Ilic D; Bleuler H; Zoethout J
    Stud Health Technol Inform; 2006; 119():388-92. PubMed ID: 16404084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of people's responses to real and virtual handshakes within a virtual environment.
    Giannopoulos E; Wang Z; Peer A; Buss M; Slater M
    Brain Res Bull; 2011 Jun; 85(5):276-82. PubMed ID: 21112376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering requirements for a haptic simulator for knee arthroscopy training.
    Zivanovic A; Dibble E; Davies B; Moody L; Waterworth A
    Stud Health Technol Inform; 2003; 94():413-8. PubMed ID: 15455938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel Method for Surface Exploration by 6-DOF Encountered-Type Haptic Display Towards Virtual Palpation.
    Diez SP; Poorten EV; Reynaerts D; Yokokohji Y
    IEEE Trans Haptics; 2021; 14(3):577-590. PubMed ID: 33735085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures.
    Cruces RA; Wahrburg J
    Int J Med Robot; 2007 Dec; 3(4):316-22. PubMed ID: 17948919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design, characterisation and validation of a haptic interface based on twisted string actuation.
    Skvortsova V; Nedelchev S; Brown J; Farkhatdinov I; Gaponov I
    Front Robot AI; 2022; 9():977367. PubMed ID: 36185974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.