These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26962952)

  • 61. Haptic feedback enhances grip force control of sEMG-controlled prosthetic hands in targeted reinnervation amputees.
    Kim K; Colgate JE
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):798-805. PubMed ID: 22855230
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Force exertion capacity measurements in haptic virtual environments.
    Munih M; Bardorfer A; Ceru B; Bajd T; Zupan A
    Int J Rehabil Res; 2010 Mar; 33(1):34-42. PubMed ID: 20042979
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Introducing a healthcare-assistive robot in primary care: a preliminary questionnaire survey.
    Tan NC; Yusoff Y; Koot D; Lau QC; Lim H; Hui TF; Cher HY; Tan PYA; Koh YLE
    Front Robot AI; 2023; 10():1123153. PubMed ID: 37251354
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Control of a Robot Dancer for Enhancing Haptic Human-Robot Interaction in Waltz.
    Hongbo Wang ; Kosuge K
    IEEE Trans Haptics; 2012; 5(3):264-73. PubMed ID: 26964112
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Stable and Intuitive Control of an Intelligent Assist Device.
    Duchaine V; Mayer St-Onge B; Dalong Gao ; Gosselin C
    IEEE Trans Haptics; 2012; 5(2):148-59. PubMed ID: 26964071
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Study on the Control Method of 6-DOF Magnetic Levitation System Using Non-Contact Position Sensors.
    Jung DH; Lim JS
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679695
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Forward kinematic analysis of in-vivo robot for stomach biopsy.
    Sutar MK; Pathak PM; Sharma AK; Mehta NK; Gupta VK
    J Robot Surg; 2013 Sep; 7(3):281-7. PubMed ID: 27000924
    [TBL] [Abstract][Full Text] [Related]  

  • 68. 6-DoF Haptic Rendering of Static Coulomb Friction Using Linear Programming.
    Zhao D; Li Y; Barbic J
    IEEE Trans Haptics; 2018 Feb; ():. PubMed ID: 29994515
    [TBL] [Abstract][Full Text] [Related]  

  • 69. PREDICTOR: A Physical emulatoR enabling safEty anD ergonomICs evaluation and Training of physical human-rObot collaboRation.
    Sunesson CE; Schøn DT; Hassø CNP; Chinello F; Fang C
    Front Neurorobot; 2023; 17():1080038. PubMed ID: 36860936
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Design and Evaluation of a Cable-Driven fMRI-Compatible Haptic Interface to Investigate Precision Grip Control.
    Vigaru B; Sulzer J; Gassert R
    IEEE Trans Haptics; 2016; 9(1):20-32. PubMed ID: 26441454
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Exploring Effects of Information Filtering With a VR Interface for Multi-Robot Supervision.
    Butters D; Jonasson ET; Pawar VM
    Front Robot AI; 2021; 8():692180. PubMed ID: 34621790
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Equilibrium Conformation of a Novel Cable-Driven Snake-Arm Robot under External Loads.
    Huang L; Liu B; Zhang L; Yin L
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888966
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Wrapping Haptic Displays Around Robot Arms to Communicate Learning.
    Valdivia AA; Habibian S; Mendenhall CA; Fuentes F; Shailly R; Losey DP; Blumenschein LH
    IEEE Trans Haptics; 2023 Jan; PP():. PubMed ID: 37022237
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Minimal Design of a Human Infant Presence: A Case Study Toward Interactive Doll Therapy for Older Adults With Dementia.
    Sumioka H; Yamato N; Shiomi M; Ishiguro H
    Front Robot AI; 2021; 8():633378. PubMed ID: 34222346
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Design and Evaluation of a 3-DoF Haptic Device for Directional Shear Cues on the Forearm.
    Yoshida KT; Zook ZA; Choi H; Luo M; O'Malley MK; Okamura AM
    IEEE Trans Haptics; 2024 Feb; PP():. PubMed ID: 38349838
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Haptic Interface Based on Potential Mechanical Energy to Investigate Human Motor Control using fMRI.
    Dovat L; Gassert R; Chapuis D; Ganesh G; Burdet E; Bleuler H
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():5021-4. PubMed ID: 17281373
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Peg-in-Hole Assembly Based on Two-phase Scheme and F/T Sensor for Dual-arm Robot.
    Zhang X; Zheng Y; Ota J; Huang Y
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28862691
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adaptive 6-DoF Haptic Contact Stiffness Using the Gauss Map.
    Xu H; Barbic J
    IEEE Trans Haptics; 2016; 9(3):323-332. PubMed ID: 28113563
    [TBL] [Abstract][Full Text] [Related]  

  • 79. fMRI-Compatible Electromagnetic Haptic Interface.
    Riener R; Villgrattner T; Kleiser R; Nef T; Kollias S
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7024-7. PubMed ID: 17281892
    [TBL] [Abstract][Full Text] [Related]  

  • 80. RoboHapalytics: A Robot Assisted Haptic Controller for Immersive Analytics.
    Dai S; Smiley J; Dwyer T; Ens B; Besancon L
    IEEE Trans Vis Comput Graph; 2023 Jan; 29(1):451-461. PubMed ID: 36155467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.