These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 26963025)
41. Copper(I) and copper(II) inhibit Aβ peptides proteolysis by insulin-degrading enzyme differently: implications for metallostasis alteration in Alzheimer's disease. Grasso G; Pietropaolo A; Spoto G; Pappalardo G; Tundo GR; Ciaccio C; Coletta M; Rizzarelli E Chemistry; 2011 Feb; 17(9):2752-62. PubMed ID: 21274957 [TBL] [Abstract][Full Text] [Related]
42. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. Couturier J; Stancu IC; Schakman O; Pierrot N; Huaux F; Kienlen-Campard P; Dewachter I; Octave JN J Neuroinflammation; 2016 Jan; 13():20. PubMed ID: 26818951 [TBL] [Abstract][Full Text] [Related]
43. TFEB Participates in the Aβ-Induced Pathogenesis of Alzheimer's Disease by Regulating the Autophagy-Lysosome Pathway. Zhang YD; Zhao JJ DNA Cell Biol; 2015 Nov; 34(11):661-8. PubMed ID: 26368054 [TBL] [Abstract][Full Text] [Related]
44. Toward Allosterically Increased Catalytic Activity of Insulin-Degrading Enzyme against Amyloid Peptides. Kurochkin IV; Guarnera E; Wong JH; Eisenhaber F; Berezovsky IN Biochemistry; 2017 Jan; 56(1):228-239. PubMed ID: 27982586 [TBL] [Abstract][Full Text] [Related]
45. Identification of N-terminally truncated pyroglutamate amyloid-β in cholesterol-enriched diet-fed rabbit and AD brain. Perez-Garmendia R; Hernandez-Zimbron LF; Morales MA; Luna-Muñoz J; Mena R; Nava-Catorce M; Acero G; Vasilevko V; Viramontes-Pintos A; Cribbs DH; Gevorkian G J Alzheimers Dis; 2014; 39(2):441-55. PubMed ID: 24240639 [TBL] [Abstract][Full Text] [Related]
46. Glucocorticoids facilitate astrocytic amyloid-β peptide deposition by increasing the expression of APP and BACE1 and decreasing the expression of amyloid-β-degrading proteases. Wang Y; Li M; Tang J; Song M; Xu X; Xiong J; Li J; Bai Y Endocrinology; 2011 Jul; 152(7):2704-15. PubMed ID: 21558319 [TBL] [Abstract][Full Text] [Related]
47. The irreversible binding of amyloid peptide substrates to insulin-degrading enzyme: a biological perspective. de Tullio MB; Morelli L; Castaño EM Prion; 2008; 2(2):51-6. PubMed ID: 19098445 [TBL] [Abstract][Full Text] [Related]
48. Cooperative therapeutic action of retinoic acid receptor and retinoid x receptor agonists in a mouse model of Alzheimer's disease. Kawahara K; Suenobu M; Ohtsuka H; Kuniyasu A; Sugimoto Y; Nakagomi M; Fukasawa H; Shudo K; Nakayama H J Alzheimers Dis; 2014; 42(2):587-605. PubMed ID: 24916544 [TBL] [Abstract][Full Text] [Related]
49. Somatostatin modulates insulin-degrading-enzyme metabolism: implications for the regulation of microglia activity in AD. Tundo G; Ciaccio C; Sbardella D; Boraso M; Viviani B; Coletta M; Marini S PLoS One; 2012; 7(4):e34376. PubMed ID: 22509294 [TBL] [Abstract][Full Text] [Related]
51. A butyrolactone derivative 3BDO alleviates memory deficits and reduces amyloid-β deposition in an AβPP/PS1 transgenic mouse model. Wei L; Yang H; Xie Z; Yang S; Yang H; Zhao C; Wang P; Xu S; Miao J; Zhao B; Bi J J Alzheimers Dis; 2012; 30(3):531-43. PubMed ID: 22451314 [TBL] [Abstract][Full Text] [Related]
52. Insulin-degrading enzyme (IDE) as a modulator of microglial phenotypes in the context of Alzheimer's disease and brain aging. Corraliza-Gomez M; Bermejo T; Lilue J; Rodriguez-Iglesias N; Valero J; Cozar-Castellano I; Arranz E; Sanchez D; Ganfornina MD J Neuroinflammation; 2023 Oct; 20(1):233. PubMed ID: 37817156 [TBL] [Abstract][Full Text] [Related]
53. The expression and activity of K Boscia F; Pannaccione A; Ciccone R; Casamassa A; Franco C; Piccialli I; de Rosa V; Vinciguerra A; Di Renzo G; Annunziato L Neurobiol Aging; 2017 Jun; 54():187-198. PubMed ID: 28390823 [TBL] [Abstract][Full Text] [Related]
54. Identification and functional characterization of a putative IDE, C28F5.4 (ceIDE-1), in Caenorhabditis elegans: Implications for Alzheimer's disease. Haque R; Nazir A Biochim Biophys Acta; 2016 Nov; 1860(11 Pt A):2454-2462. PubMed ID: 27443962 [TBL] [Abstract][Full Text] [Related]
55. Regulation of beta-amyloid levels in the brain of cholesterol-fed rabbit, a model system for sporadic Alzheimer's disease. Jaya Prasanthi RP; Schommer E; Thomasson S; Thompson A; Feist G; Ghribi O Mech Ageing Dev; 2008 Nov; 129(11):649-55. PubMed ID: 18845178 [TBL] [Abstract][Full Text] [Related]
56. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. Ho L; Qin W; Pompl PN; Xiang Z; Wang J; Zhao Z; Peng Y; Cambareri G; Rocher A; Mobbs CV; Hof PR; Pasinetti GM FASEB J; 2004 May; 18(7):902-4. PubMed ID: 15033922 [TBL] [Abstract][Full Text] [Related]
57. Autophagy-related protein 7 deficiency in amyloid β (Aβ) precursor protein transgenic mice decreases Aβ in the multivesicular bodies and induces Aβ accumulation in the Golgi. Nilsson P; Sekiguchi M; Akagi T; Izumi S; Komori T; Hui K; Sörgjerd K; Tanaka M; Saito T; Iwata N; Saido TC Am J Pathol; 2015 Feb; 185(2):305-13. PubMed ID: 25433221 [TBL] [Abstract][Full Text] [Related]
58. New Insights on the Regulation of the Insulin-Degrading Enzyme: Role of microRNAs and RBPs. Martín-Martín Y; Pérez-García A; Torrecilla-Parra M; Fernández-de Frutos M; Pardo-Marqués V; Casarejos MJ; Busto R; Ramírez CM Cells; 2022 Aug; 11(16):. PubMed ID: 36010613 [TBL] [Abstract][Full Text] [Related]
59. Activated protein C inhibits amyloid β production via promoting expression of ADAM-10. Li B; Yu D; Xu Z Brain Res; 2014 Jan; 1545():35-44. PubMed ID: 24333930 [TBL] [Abstract][Full Text] [Related]
60. Autophagy is involved in oral rAAV/Aβ vaccine-induced Aβ clearance in APP/PS1 transgenic mice. Wang HC; Zhang T; Kuerban B; Jin YL; Le W; Hara H; Fan DS; Wang YJ; Tabira T; Chui DH Neurosci Bull; 2015 Aug; 31(4):491-504. PubMed ID: 26254061 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]