These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 26963693)
1. A bio-inspired device for drag reduction on a three-dimensional model vehicle. Kim D; Lee H; Yi W; Choi H Bioinspir Biomim; 2016 Mar; 11(2):026004. PubMed ID: 26963693 [TBL] [Abstract][Full Text] [Related]
2. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil. Johnston J; Gopalarathnam A Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691 [TBL] [Abstract][Full Text] [Related]
3. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing. Winzen A; Roidl B; Schröder W Bioinspir Biomim; 2016 Apr; 11(2):026005. PubMed ID: 27033298 [TBL] [Abstract][Full Text] [Related]
4. A lifting line model to investigate the influence of tip feathers on wing performance. Fluck M; Crawford C Bioinspir Biomim; 2014 Nov; 9(4):046017. PubMed ID: 25418986 [TBL] [Abstract][Full Text] [Related]
5. Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods. Caetano JV; Percin M; van Oudheusden BW; Remes B; de Wagter C; de Croon GC; de Visser CC Bioinspir Biomim; 2015 Aug; 10(5):056004. PubMed ID: 26292289 [TBL] [Abstract][Full Text] [Related]
6. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing. Winzen A; Roidl B; Schröder W Bioinspir Biomim; 2015 Sep; 10(5):056009. PubMed ID: 26372422 [TBL] [Abstract][Full Text] [Related]
7. The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device. Ito MR; Duan C; Wissa AA Bioinspir Biomim; 2019 Aug; 14(5):056015. PubMed ID: 31357180 [TBL] [Abstract][Full Text] [Related]
8. An improved quasi-steady aerodynamic model for insect wings that considers movement of the center of pressure. Han JS; Kim JK; Chang JW; Han JH Bioinspir Biomim; 2015 Jul; 10(4):046014. PubMed ID: 26226478 [TBL] [Abstract][Full Text] [Related]
9. A bio-inspired study on tidal energy extraction with flexible flapping wings. Liu W; Xiao Q; Cheng F Bioinspir Biomim; 2013 Sep; 8(3):036011. PubMed ID: 23981650 [TBL] [Abstract][Full Text] [Related]
10. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight. Percin M; van Oudheusden BW; de Croon GC; Remes B Bioinspir Biomim; 2016 May; 11(3):036014. PubMed ID: 27194392 [TBL] [Abstract][Full Text] [Related]
11. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Phillips N; Knowles K; Bomphrey RJ Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802 [TBL] [Abstract][Full Text] [Related]
12. Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight. Lynch M; Mandadzhiev B; Wissa A Bioinspir Biomim; 2018 Mar; 13(3):036003. PubMed ID: 29388556 [TBL] [Abstract][Full Text] [Related]
13. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression. Rao C; Ikeda T; Nakata T; Liu H Bioinspir Biomim; 2017 Jul; 12(4):046008. PubMed ID: 28675148 [TBL] [Abstract][Full Text] [Related]
14. Effect of outer wing separation on lift and thrust generation in a flapping wing system. Mahardika N; Viet NQ; Park HC Bioinspir Biomim; 2011 Sep; 6(3):036006. PubMed ID: 21852715 [TBL] [Abstract][Full Text] [Related]
15. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method. Tay WB; van Oudheusden BW; Bijl H Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155 [TBL] [Abstract][Full Text] [Related]
16. Experimental study of a passive control of airfoil lift using bioinspired feather flap. Wang L; Alam MM; Zhou Y Bioinspir Biomim; 2019 Sep; 14(6):066005. PubMed ID: 31434057 [TBL] [Abstract][Full Text] [Related]
17. On the high-lift characteristics of a bio-inspired, slotted delta wing. Sheppard KA; Rival DE Bioinspir Biomim; 2018 Apr; 13(3):036008. PubMed ID: 29447117 [TBL] [Abstract][Full Text] [Related]
18. Reynolds number dependency of an insect-based flapping wing. Han JS; Chang JW; Kim ST Bioinspir Biomim; 2014; 9(4):046012. PubMed ID: 25381677 [TBL] [Abstract][Full Text] [Related]
19. Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation. Winter AG; V ; Deits RL; Dorsch DS; Slocum AH; Hosoi AE Bioinspir Biomim; 2014 Sep; 9(3):036009. PubMed ID: 24713848 [TBL] [Abstract][Full Text] [Related]
20. Covert-inspired flaps: an experimental study to understand the interactions between upperwing and underwing covert feathers. Zekry DA; Nam T; Gupta R; Zhu Y; Wissa AA Bioinspir Biomim; 2023 Jun; 18(4):. PubMed ID: 37366564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]