BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

816 related articles for article (PubMed ID: 26964015)

  • 1. Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects.
    Qi X; Huang Y; Han D; Zhang J; Cao J; Jin X; Huang J; Li X; Wang T
    Biomed Mater; 2016 Mar; 11(2):025005. PubMed ID: 26964015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [EXPERIMENTAL STUDY ON BONE DEFECT REPAIR WITH COMPOSITE OF ATTAPULGITE/COLLAGEN TYPE I/POLY (CAPROLACTONE) IN RABBITS].
    Zhang X; Song X; Wang W; Li Z; Zhao H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 May; 30(5):626-633. PubMed ID: 29786308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed poly(ε-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects.
    Buyuksungur S; Endogan Tanir T; Buyuksungur A; Bektas EI; Torun Kose G; Yucel D; Beyzadeoglu T; Cetinkaya E; Yenigun C; Tönük E; Hasirci V; Hasirci N
    Biomater Sci; 2017 Sep; 5(10):2144-2158. PubMed ID: 28880313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.
    Chuenjitkuntaworn B; Osathanon T; Nowwarote N; Supaphol P; Pavasant P
    J Biomed Mater Res A; 2016 Jan; 104(1):264-71. PubMed ID: 26362586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications.
    Bhakta G; Ekaputra AK; Rai B; Abbah SA; Tan TC; Le BQ; Chatterjea A; Hu T; Lin T; Arafat MT; van Wijnen AJ; Goh J; Nurcombe V; Bhakoo K; Birch W; Xu L; Gibson I; Wong HK; Cool SM
    Spine J; 2018 May; 18(5):818-830. PubMed ID: 29269312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: a novel strategy to promote bone regeneration.
    Qi Y; Niu L; Zhao T; Shi Z; Di T; Feng G; Li J; Huang Z
    Stem Cell Res Ther; 2015 Dec; 6():256. PubMed ID: 26689714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Osteogenic effect of peptides anchored aminated tissue engineered bone for repairing femoral defect in rats].
    Xu Z; Chen J; Xu W; Zhu X; Wang C; Luo H; Li G; Chen R
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):520-8. PubMed ID: 23879086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells.
    Xuan Y; Tang H; Wu B; Ding X; Lu Z; Li W; Xu Z
    J Biomed Mater Res A; 2014 Oct; 102(10):3401-8. PubMed ID: 24142768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds.
    Janmohammadi M; Doostmohammadi N; Bahraminasab M; Nourbakhsh MS; Arab S; Asgharzade S; Ghanbari A; Satari A
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132361. PubMed ID: 38750857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair.
    Ma L; Yu Y; Liu H; Sun W; Lin Z; Liu C; Miao L
    Sci Rep; 2021 Jan; 11(1):1027. PubMed ID: 33441759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone) /nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation.
    Ji X; Yuan X; Ma L; Bi B; Zhu H; Lei Z; Liu W; Pu H; Jiang J; Jiang X; Zhang Y; Xiao J
    Theranostics; 2020; 10(2):725-740. PubMed ID: 31903147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects.
    Yilgor P; Yilmaz G; Onal MB; Solmaz I; Gundogdu S; Keskil S; Sousa RA; Reis RL; Hasirci N; Hasirci V
    J Tissue Eng Regen Med; 2013 Sep; 7(9):687-96. PubMed ID: 22396311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering.
    Ba Linh NT; Min YK; Lee BT
    J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration.
    Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds.
    Saito E; Suarez-Gonzalez D; Murphy WL; Hollister SJ
    Adv Healthc Mater; 2015 Mar; 4(4):621-32. PubMed ID: 25515846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2.
    Taniyama T; Masaoka T; Yamada T; Wei X; Yasuda H; Yoshii T; Kozaka Y; Takayama T; Hirano M; Okawa A; Sotome S
    Artif Organs; 2015 Jun; 39(6):529-35. PubMed ID: 25865039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.