BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26964216)

  • 1. [Application of FTIR Microspectroscopy in the Study of Lignocellulosic Cell Walls].
    Ding DY; Zhou X; Xu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3393-6. PubMed ID: 26964216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free in situ imaging of lignification in plant cell walls.
    Schmidt M; Perera P; Schwartzberg AM; Adams PD; Schuck PJ
    J Vis Exp; 2010 Nov; (45):. PubMed ID: 21085100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Application of the Raman spectroscopy to the study of plant cell walls].
    Ma J; Ma JF; Zhang X; Xu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1239-43. PubMed ID: 23905327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Raman Spectra Study on Topochemistry in Miscanthus × giganteus Cell Walls During Dilute Acid Pretreatment].
    He C; Zhou X; Yao CL; Xu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2553-7. PubMed ID: 26669166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Plant Cell Walls by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy.
    da Costa RMF; Barrett W; Carli J; Allison GG
    Methods Mol Biol; 2020; 2149():297-313. PubMed ID: 32617941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing spatial distribution and accessibility of cell wall polymers in bamboo through chemical imaging and mild chemical treatments.
    Zhu J; Ren W; Guo F; Wang H; Yu Y
    Carbohydr Polym; 2024 Sep; 339():122261. PubMed ID: 38823925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of pretreatment on topochemical and ultrastructural changes of lignocellulose plant cell walls: a review].
    Ji Z; Ling Z; Zhang X; Ma J; Xu F
    Sheng Wu Gong Cheng Xue Bao; 2014 May; 30(5):707-15. PubMed ID: 25118394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment.
    Donohoe BS; Decker SR; Tucker MP; Himmel ME; Vinzant TB
    Biotechnol Bioeng; 2008 Dec; 101(5):913-25. PubMed ID: 18781690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20224547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourier transform infrared imaging and microscopy studies of Pinus radiata pulps regarding the simultaneous saccharification and fermentation process.
    Castillo RDP; Araya J; Troncoso E; Vinet S; Freer J
    Anal Chim Acta; 2015 Mar; 866():10-20. PubMed ID: 25732688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired lignocellulosic films to understand the mechanical properties of lignified plant cell walls at nanoscale.
    Muraille L; Aguié-Béghin V; Chabbert B; Molinari M
    Sci Rep; 2017 Mar; 7():44065. PubMed ID: 28276462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blind image analysis for the compositional and structural characterization of plant cell walls.
    Perera PN; Schmidt M; Schuck PJ; Adams PD
    Anal Chim Acta; 2011 Sep; 702(2):172-7. PubMed ID: 21839194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20228730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal.
    Xu F; Zhu TT; Rao QQ; Shui SW; Li WW; He HB; Yao RS
    J Environ Sci (China); 2017 Mar; 53():132-140. PubMed ID: 28372737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman microspectroscopy imaging study on topochemical correlation between lignin and hydroxycinnamic acids in Miscanthus sinensis.
    Ma J; Zhou X; Ma J; Ji Z; Zhang X; Xu F
    Microsc Microanal; 2014 Jun; 20(3):956-63. PubMed ID: 24735557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels.
    Zeng Y; Zhao S; Yang S; Ding SY
    Curr Opin Biotechnol; 2014 Jun; 27():38-45. PubMed ID: 24863895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical imaging of lignocellulosic biomass by CARS microscopy.
    Pohling C; Brackmann C; Duarte A; Buckup T; Enejder A; Motzkus M
    J Biophotonics; 2014 Jan; 7(1-2):126-34. PubMed ID: 23836627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Complex Carbohydrate Composition in Plant Cell Wall Using Fourier Transform Mid-Infrared Spectroscopy.
    Badhan A; Wang Y; McAllister TA
    Methods Mol Biol; 2023; 2657():207-213. PubMed ID: 37149533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aleurone cell walls of wheat grain: high spatial resolution investigation using synchrotron infrared microspectroscopy.
    Jamme F; Robert P; Bouchet B; Saulnier L; Dumas P; Guillon F
    Appl Spectrosc; 2008 Aug; 62(8):895-900. PubMed ID: 18702863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.
    van Kuijk SJA; Sonnenberg ASM; Baars JJP; Hendriks WH; Cone JW
    Biotechnol Adv; 2015; 33(1):191-202. PubMed ID: 25447421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.