These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26964216)

  • 21. Cell-specific chemotyping and multivariate imaging by combined FT-IR microspectroscopy and orthogonal projections to latent structures (OPLS) analysis reveals the chemical landscape of secondary xylem.
    Gorzsás A; Stenlund H; Persson P; Trygg J; Sundberg B
    Plant J; 2011 Jun; 66(5):903-14. PubMed ID: 21332846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improvement of radio frequency (RF) heating-assisted alkaline pretreatment on four categories of lignocellulosic biomass.
    Wang X; Taylor S; Wang Y
    Bioprocess Biosyst Eng; 2016 Oct; 39(10):1539-51. PubMed ID: 27262715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials.
    Sun S; Sun S; Cao X; Sun R
    Bioresour Technol; 2016 Jan; 199():49-58. PubMed ID: 26321216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms employed by cellulase systems to gain access through the complex architecture of lignocellulosic substrates.
    Donohoe BS; Resch MG
    Curr Opin Chem Biol; 2015 Dec; 29():100-7. PubMed ID: 26529490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deconstruction of lignocellulosic biomass to fuels and chemicals.
    Chundawat SP; Beckham GT; Himmel ME; Dale BE
    Annu Rev Chem Biomol Eng; 2011; 2():121-45. PubMed ID: 22432613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.
    Sills DL; Gossett JM
    Biotechnol Bioeng; 2012 Apr; 109(4):894-903. PubMed ID: 22094883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synchrotron Time-Lapse Imaging of Lignocellulosic Biomass Hydrolysis: Tracking Enzyme Localization by Protein Autofluorescence and Biochemical Modification of Cell Walls by Microfluidic Infrared Microspectroscopy.
    Devaux MF; Jamme F; André W; Bouchet B; Alvarado C; Durand S; Robert P; Saulnier L; Bonnin E; Guillon F
    Front Plant Sci; 2018; 9():200. PubMed ID: 29515611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation.
    Silveira RL; Stoyanov SR; Gusarov S; Skaf MS; Kovalenko A
    J Phys Chem Lett; 2015 Jan; 6(1):206-11. PubMed ID: 26263115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deposition of cell wall polysaccharides in wheat endosperm during grain development: Fourier transform-infrared microspectroscopy study.
    Philippe S; Robert P; Barron C; Saulnier L; Guillon F
    J Agric Food Chem; 2006 Mar; 54(6):2303-8. PubMed ID: 16536611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualizing chemical functionality in plant cell walls.
    Zeng Y; Himmel ME; Ding SY
    Biotechnol Biofuels; 2017; 10():263. PubMed ID: 29213316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks.
    Poovaiah CR; Nageswara-Rao M; Soneji JR; Baxter HL; Stewart CN
    Plant Biotechnol J; 2014 Dec; 12(9):1163-73. PubMed ID: 25051990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sugarcane cell wall structure and lignin distribution investigated by confocal and electron microscopy.
    Sant'Anna C; Costa LT; Abud Y; Biancatto L; Miguens FC; de Souza W
    Microsc Res Tech; 2013 Aug; 76(8):829-34. PubMed ID: 23733560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visualizing Lignification Dynamics in Plants with Click Chemistry: Dual Labeling is BLISS!
    Simon C; Spriet C; Hawkins S; Lion C
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates.
    Meng X; Ragauskas AJ
    Curr Opin Biotechnol; 2014 Jun; 27():150-8. PubMed ID: 24549148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review.
    Barakat A; de Vries H; Rouau X
    Bioresour Technol; 2013 Apr; 134():362-73. PubMed ID: 23499177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compositional analysis of lignocellulosic biomass: conventional methodologies and future outlook.
    Krasznai DJ; Champagne Hartley R; Roy HM; Champagne P; Cunningham MF
    Crit Rev Biotechnol; 2018 Mar; 38(2):199-217. PubMed ID: 28595468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermoset-cross-linked lignocellulose: a moldable plant biomass.
    Karumuri S; Hiziroglu S; Kalkan AK
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6596-604. PubMed ID: 25734539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure.
    Zimmermann B; Bağcıoğlu M; Sandt C; Kohler A
    Planta; 2015 Nov; 242(5):1237-50. PubMed ID: 26289829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of hydrotropic pretreatment on lignocellulosic biomass.
    Devendra LP; Kiran Kumar M; Pandey A
    Bioresour Technol; 2016 Aug; 213():350-358. PubMed ID: 27013188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergetic Dissolution of Branched Xylan and Lignin Opens the Way for Enzymatic Hydrolysis of Poplar Cell Wall.
    Zhou X; Ding D; You T; Zhang X; Takabe K; Xu F
    J Agric Food Chem; 2018 Apr; 66(13):3449-3456. PubMed ID: 29553741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.