These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26964520)

  • 1. Artificial supramolecular protein assemblies as functional high-order protein scaffolds.
    Kim YN; Jung Y
    Org Biomol Chem; 2016 Jun; 14(24):5352-6. PubMed ID: 26964520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency.
    Kim YE; Kim YN; Kim JA; Kim HM; Jung Y
    Nat Commun; 2015 May; 6():7134. PubMed ID: 25972078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks.
    Kobayashi N; Arai R
    Curr Opin Biotechnol; 2017 Aug; 46():57-65. PubMed ID: 28160725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of rigidity and space variable protein oligomers with two peptide linkers.
    Choi H; Park H; Son K; Kim HM; Jung Y
    Chem Sci; 2019 Nov; 10(44):10428-10435. PubMed ID: 32110335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial protein assemblies with well-defined supramolecular protein nanostructures.
    Han S; Jung Y
    Biochem Soc Trans; 2021 Dec; 49(6):2821-2830. PubMed ID: 34812854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physical properties of supramolecular peptide assemblies: from building block association to technological applications.
    Adler-Abramovich L; Gazit E
    Chem Soc Rev; 2014; 43(20):6881-93. PubMed ID: 25099656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multivalent-Interaction-Driven Assembly of Discrete, Flexible, and Asymmetric Supramolecular Protein Nano-Prisms.
    Han S; Kim YN; Jo G; Kim YE; Kim HM; Choi JM; Jung Y
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):23244-23251. PubMed ID: 32856385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of novel biomaterials through molecular self-assembly.
    Zhang S
    Nat Biotechnol; 2003 Oct; 21(10):1171-8. PubMed ID: 14520402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular oligothiophene microfibers spontaneously assembled on surfaces or coassembled with proteins inside live cells.
    Barbarella G; Di Maria F
    Acc Chem Res; 2015 Aug; 48(8):2230-41. PubMed ID: 26234700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular scaffolds enabling the controlled assembly of functional molecular units.
    Ishiwari F; Shoji Y; Fukushima T
    Chem Sci; 2018 Feb; 9(8):2028-2041. PubMed ID: 29719683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Precise Manipulation of DNA-Protein Hybrid Nanoarchitectures.
    Zhou K; Dong J; Zhou Y; Dong J; Wang M; Wang Q
    Small; 2019 Jun; 15(26):e1804044. PubMed ID: 30645016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Oligomeric Avidin Scaffolds for Valency-Controlled Surface Display of Functional Ligands.
    Yoon HR; Choi H; Choi YA; Kim JA; Jung J; Kim HM; Jung Y
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12410-12414. PubMed ID: 30062865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein self-assembly via supramolecular strategies.
    Bai Y; Luo Q; Liu J
    Chem Soc Rev; 2016 May; 45(10):2756-67. PubMed ID: 27080059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designed Repeat Proteins as Building Blocks for Nanofabrication.
    Mejias SH; Aires A; Couleaud P; Cortajarena AL
    Adv Exp Med Biol; 2016; 940():61-81. PubMed ID: 27677509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-based macroscopic assemblies and architectures: an emerging material system.
    Cong HP; Chen JF; Yu SH
    Chem Soc Rev; 2014 Nov; 43(21):7295-325. PubMed ID: 25065466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organized chromophoric assemblies for nonlinear optical materials: towards (sub)wavelength scale architectures.
    Xu J; Semin S; Rasing T; Rowan AE
    Small; 2015 Mar; 11(9-10):1113-29. PubMed ID: 25358754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular dendritic polymers: from synthesis to applications.
    Dong R; Zhou Y; Zhu X
    Acc Chem Res; 2014 Jul; 47(7):2006-16. PubMed ID: 24779892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular Protein Assemblies Based on DNA Templates.
    Hou C; Guan S; Wang R; Zhang W; Meng F; Zhao L; Xu J; Liu J
    J Phys Chem Lett; 2017 Sep; 8(17):3970-3979. PubMed ID: 28792224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding to protein surfaces by supramolecular multivalent scaffolds.
    Martos V; CastreƱo P; Valero J; de Mendoza J
    Curr Opin Chem Biol; 2008 Dec; 12(6):698-706. PubMed ID: 18801458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in designing protein-based supramolecular assemblies.
    Hansen WA; Khare SD
    Curr Opin Struct Biol; 2020 Aug; 63():106-114. PubMed ID: 32569994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.