These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26964937)

  • 1. Precise spatial control of cavitation erosion in a vessel phantom by using an ultrasonic standing wave.
    Shi A; Huang P; Guo S; Zhao L; Jia Y; Zong Y; Wan M
    Ultrason Sonochem; 2016 Jul; 31():163-72. PubMed ID: 26964937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time monitoring of controllable cavitation erosion in a vessel phantom with passive acoustic mapping.
    Lu S; Shi A; Jing B; Du X; Wan M
    Ultrason Sonochem; 2017 Nov; 39():291-300. PubMed ID: 28732948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical bioeffects of acoustic droplet vaporization in vessel-mimicking phantoms.
    Kang ST; Lin YC; Yeh CK
    Ultrason Sonochem; 2014 Sep; 21(5):1866-74. PubMed ID: 24690297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal evolution of cavitation dynamics exhibited by flowing microbubbles during ultrasound exposure.
    Choi JJ; Coussios CC
    J Acoust Soc Am; 2012 Nov; 132(5):3538-49. PubMed ID: 23145633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a reference ultrasonic cavitation vessel: Part 2--investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field.
    Hodnett M; Zeqiri B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1809-22. PubMed ID: 18986923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: II. Systematic Investigation in an Agar Material.
    Haller J; Wilkens V
    Ultrasound Med Biol; 2018 Feb; 44(2):397-415. PubMed ID: 29195755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.
    Erpelding TN; Hollman KW; O'Donnell M
    Ultrasound Med Biol; 2007 Feb; 33(2):263-9. PubMed ID: 17306697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound.
    Lin Y; Lin L; Cheng M; Jin L; Du L; Han T; Xu L; Yu ACH; Qin P
    Ultrason Sonochem; 2017 Mar; 35(Pt A):176-184. PubMed ID: 27707644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse effects of flowing phase-shift nanodroplets and lipid-shelled microbubbles on subsequent cavitation during focused ultrasound exposures.
    Zhang S; Cui Z; Xu T; Liu P; Li D; Shang S; Xu R; Zong Y; Niu G; Wang S; He X; Wan M
    Ultrason Sonochem; 2017 Jan; 34():400-409. PubMed ID: 27773262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation.
    Tian Y; Liu Z; Li X; Zhang L; Li R; Jiang R; Dong F
    Ultrason Sonochem; 2018 May; 43():29-37. PubMed ID: 29555286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: I. Method and Terminology.
    Haller J; Wilkens V; Shaw A
    Ultrasound Med Biol; 2018 Feb; 44(2):377-396. PubMed ID: 29195754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels.
    Zeqiri B; Hodnett M; Carroll AJ
    Ultrasonics; 2006 Jan; 44(1):73-82. PubMed ID: 16213538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.
    Zhou Y; Gao XW
    J Acoust Soc Am; 2013 Aug; 134(2):1683-94. PubMed ID: 23927209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavitation and non-cavitation regime for large-scale ultrasonic standing wave particle separation systems--In situ gentle cavitation threshold determination and free radical related oxidation.
    Johansson L; Singh T; Leong T; Mawson R; McArthur S; Manasseh R; Juliano P
    Ultrason Sonochem; 2016 Jan; 28():346-356. PubMed ID: 26384918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.
    Sazgarnia A; Shanei A; Shanei MM
    Ultrason Sonochem; 2014 Jan; 21(1):268-74. PubMed ID: 23938062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavitation distribution within large phantom vessel and mechanical damage formed on surrounding vessel wall.
    Qiao Y; Yin H; Li Z; Wan M
    Ultrason Sonochem; 2013 Nov; 20(6):1376-83. PubMed ID: 23623758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound field distribution and ultrasonic oxidation desulfurization efficiency.
    Liu L; Wen J; Yang Y; Tan W
    Ultrason Sonochem; 2013 Mar; 20(2):696-702. PubMed ID: 23168078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.
    Xu S; Hu H; Jiang H; Xu Z; Wan M
    J Ultrasound Med; 2014 Nov; 33(11):1957-70. PubMed ID: 25336483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.