These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 26965053)

  • 21. Assessing the Structure and Equilibrium Conditions of Complex Coacervate Core Micelles by Varying Their Shell Composition and Medium Ionic Strength.
    Sabadini JB; Oliveira CLP; Loh W
    Langmuir; 2024 Jan; 40(4):2015-2027. PubMed ID: 38240211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Temperature and Ionic Strength on Micellar Aggregates of Oppositely Charged Thermoresponsive Block Copolymer Polyelectrolytes.
    Fehér B; Zhu K; Nyström B; Varga I; Pedersen JS
    Langmuir; 2019 Oct; 35(42):13614-13623. PubMed ID: 31577150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan - gum Arabic coacervates.
    Huang GQ; Du YL; Xiao JX; Wang GY
    Food Chem; 2017 Aug; 228():236-242. PubMed ID: 28317718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heteroprotein complex coacervation: bovine β-lactoglobulin and lactoferrin.
    Yan Y; Kizilay E; Seeman D; Flanagan S; Dubin PL; Bovetto L; Donato L; Schmitt C
    Langmuir; 2013 Dec; 29(50):15614-23. PubMed ID: 24164315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular Design of Chemically Fueled Peptide-Polyelectrolyte Coacervate-Based Assemblies.
    Späth F; Donau C; Bergmann AM; Kränzlein M; Synatschke CV; Rieger B; Boekhoven J
    J Am Chem Soc; 2021 Mar; 143(12):4782-4789. PubMed ID: 33750125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of ionic strength on surface-selective patch binding-induced phase separation and coacervation in similarly charged gelatin-agar molecular systems.
    Boral S; Bohidar HB
    J Phys Chem B; 2010 Sep; 114(37):12027-35. PubMed ID: 20809576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study of the complex coacervation mechanism between the lysing enzyme from T. harzianum and polyallylamine hydrochloride.
    Bey H; Gtari W; Aschi A
    Int J Biol Macromol; 2019 Mar; 124():780-787. PubMed ID: 30502430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Protein Surface Charge Distribution on Protein-Polyelectrolyte Complexation.
    Kim S; Sureka HV; Kayitmazer AB; Wang G; Swan JW; Olsen BD
    Biomacromolecules; 2020 Aug; 21(8):3026-3037. PubMed ID: 32672952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembly of α-helical polypeptides driven by complex coacervation.
    Priftis D; Leon L; Song Z; Perry SL; Margossian KO; Tropnikova A; Cheng J; Tirrell M
    Angew Chem Int Ed Engl; 2015 Sep; 54(38):11128-32. PubMed ID: 26352023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linear viscoelasticity of complex coacervates.
    Liu Y; Winter HH; Perry SL
    Adv Colloid Interface Sci; 2017 Jan; 239():46-60. PubMed ID: 27633928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aqueous self-assembly of arginine and K
    Liu X; Xie X; Du Z; Li B; Wu L; Li W
    Soft Matter; 2019 Dec; 15(45):9178-9186. PubMed ID: 31584062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A case of adaptive self-assembly.
    Ding Y; Yang Y; Yang L; Yan Y; Huang J; Cohen Stuart MA
    ACS Nano; 2012 Feb; 6(2):1004-10. PubMed ID: 22208815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels.
    Kim S; Huang J; Lee Y; Dutta S; Yoo HY; Jung YM; Jho Y; Zeng H; Hwang DS
    Proc Natl Acad Sci U S A; 2016 Feb; 113(7):E847-53. PubMed ID: 26831090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence of Polyurethane Ionomers Determinative for Core Structure of Surfactant-Copolymer Complexes.
    Timmers EM; Magana JR; Schoenmakers SMC; Fransen PM; Janssen HM; Voets IK
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Encapsulation of GFP in Complex Coacervate Core Micelles.
    Nolles A; Westphal AH; de Hoop JA; Fokkink RG; Kleijn JM; van Berkel WJ; Borst JW
    Biomacromolecules; 2015 May; 16(5):1542-9. PubMed ID: 25857527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perfluoro-alcohol-induced complex coacervates of polyelectrolyte-surfactant mixtures: phase behavior and analysis.
    Nejati MM; Khaledi MG
    Langmuir; 2015 May; 31(20):5580-9. PubMed ID: 25920513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coacervation and aggregate transitions of a cationic ammonium gemini surfactant with sodium benzoate in aqueous solution.
    Wang R; Tian M; Wang Y
    Soft Matter; 2014 Mar; 10(11):1705-13. PubMed ID: 24651935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SAXS methods for investigating macromolecular and self-assembled polyelectrolyte complexes.
    Marciel AB; Srivastava S; Ting JM; Tirrell MV
    Methods Enzymol; 2021; 646():223-259. PubMed ID: 33453927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced stability of complex coacervate core micelles following different core-crosslinking strategies.
    Kembaren R; Kleijn JM; Borst JW; Kamperman M; Hofman AH
    Soft Matter; 2022 Apr; 18(15):3052-3062. PubMed ID: 35363245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of Multiphase Complex Coacervates and Partitioning of Biomolecules within them.
    Mountain GA; Keating CD
    Biomacromolecules; 2020 Feb; 21(2):630-640. PubMed ID: 31743027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.