These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 26965124)
1. Optogenetic Modulation of Locomotor Activity on Free-Behaving Rats. Xu K; Zhang J; Guo S; Zheng X Methods Mol Biol; 2016; 1408():195-206. PubMed ID: 26965124 [TBL] [Abstract][Full Text] [Related]
2. Differential Encoding of Predator Fear in the Ventromedial Hypothalamus and Periaqueductal Grey. Esteban Masferrer M; Silva BA; Nomoto K; Lima SQ; Gross CT J Neurosci; 2020 Nov; 40(48):9283-9292. PubMed ID: 33115925 [TBL] [Abstract][Full Text] [Related]
3. Optogenetic activation of the excitatory neurons expressing CaMKIIα in the ventral tegmental area upregulates the locomotor activity of free behaving rats. Guo S; Chen S; Zhang Q; Wang Y; Xu K; Zheng X Biomed Res Int; 2014; 2014():687469. PubMed ID: 24711999 [TBL] [Abstract][Full Text] [Related]
4. Intracranial Injection of an Optogenetics Viral Vector Followed by Optical Cannula Implantation for Neural Stimulation in Rat Brain Cortex. Pawela C; DeYoe E; Pashaie R Methods Mol Biol; 2016; 1408():227-41. PubMed ID: 26965126 [TBL] [Abstract][Full Text] [Related]
5. Sensory-evoked potentials recordings from the ventral tegmental area, nucleus accumbens, prefrontal cortex, and caudate nucleus and locomotor activity are modulated in dose-response characteristics by methylphenidate. Yang PB; Swann AC; Dafny N Brain Res; 2006 Feb; 1073-1074():164-74. PubMed ID: 16473326 [TBL] [Abstract][Full Text] [Related]
6. L-allylglycine dissociates the neural substrates of fear in the periaqueductal gray of rats. Cunha JM; Zanoveli JM; Ledvinka-Filho E; Brandão ML Brain Res Bull; 2010 Mar; 81(4-5):416-23. PubMed ID: 19800953 [TBL] [Abstract][Full Text] [Related]
7. Chronic methylphenidate modulates locomotor activity and sensory evoked responses in the VTA and NAc of freely behaving rats. Yang PB; Swann AC; Dafny N Neuropharmacology; 2006 Sep; 51(3):546-56. PubMed ID: 16824558 [TBL] [Abstract][Full Text] [Related]
8. Dorsal periaqueductal gray post-stimulation freezing is counteracted by neurokinin-1 receptor antagonism in the central nucleus of the amygdala in rats. Carvalho MC; Santos JM; Brandão ML Neurobiol Learn Mem; 2015 May; 121():52-8. PubMed ID: 25883049 [TBL] [Abstract][Full Text] [Related]
9. Local field potentials in the ventral tegmental area during cocaine-induced locomotor activation: Measurements in freely moving rats. Harris Bozer AL; Li AL; Sibi JE; Bobzean SA; Peng YB; Perrotti LI Brain Res Bull; 2016 Mar; 121():186-91. PubMed ID: 26855325 [TBL] [Abstract][Full Text] [Related]
10. Effects of neurokinin-1 and 3-receptor antagonists on the defensive behavior induced by electrical stimulation of the dorsal periaqueductal gray. Broiz AC; Bassi GS; De Souza Silva MA; Brandão ML Neuroscience; 2012 Jan; 201():134-45. PubMed ID: 22123168 [TBL] [Abstract][Full Text] [Related]
12. Involvement of 5-HT1A and 5-HT2 receptors of the dorsal periaqueductal gray in the regulation of the defensive behaviors generated by the elevated T-maze. de Paula Soares V; Zangrossi H Brain Res Bull; 2004 Aug; 64(2):181-8. PubMed ID: 15342106 [TBL] [Abstract][Full Text] [Related]
13. Dose response effect of methylphenidate on ventral tegmental area neurons and animal behavior. Jones Z; Dafny N Brain Res Bull; 2013 Jul; 96():86-92. PubMed ID: 23651545 [TBL] [Abstract][Full Text] [Related]
14. DAMGO depresses inhibitory synaptic transmission via different downstream pathways of μ opioid receptors in ventral tegmental area and periaqueductal gray. Zhang W; Yang HL; Song JJ; Chen M; Dong Y; Lai B; Yu YG; Ma L; Zheng P Neuroscience; 2015 Aug; 301():144-54. PubMed ID: 26047721 [TBL] [Abstract][Full Text] [Related]