BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 26965126)

  • 1. Intracranial Injection of an Optogenetics Viral Vector Followed by Optical Cannula Implantation for Neural Stimulation in Rat Brain Cortex.
    Pawela C; DeYoe E; Pashaie R
    Methods Mol Biol; 2016; 1408():227-41. PubMed ID: 26965126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic Tools for Confined Stimulation in Deep Brain Structures.
    Castonguay A; Thomas S; Lesage F; Casanova C
    Methods Mol Biol; 2016; 1408():267-79. PubMed ID: 26965129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multichannel Recording System with Optical Stimulation for Closed-Loop Optogenetic Experiments.
    Bartic C; Battaglia FP; Wang L; Nguyen TT; Cabral H; Navratilova Z
    Methods Mol Biol; 2016; 1408():333-44. PubMed ID: 26965134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Widespread optogenetic expression in macaque cortex obtained with MR-guided, convection enhanced delivery (CED) of AAV vector to the thalamus.
    Yazdan-Shahmorad A; Tian N; Kharazia V; Samaranch L; Kells A; Bringas J; He J; Bankiewicz K; Sabes PN
    J Neurosci Methods; 2018 Jan; 293():347-358. PubMed ID: 29042259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread functional opsin transduction in the rat cortex via convection-enhanced delivery optimized for horizontal spread.
    Yu Z; Nurmikko A; Ozden I
    J Neurosci Methods; 2017 Nov; 291():69-82. PubMed ID: 28807859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Modulation of Locomotor Activity on Free-Behaving Rats.
    Xu K; Zhang J; Guo S; Zheng X
    Methods Mol Biol; 2016; 1408():195-206. PubMed ID: 26965124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotype-based evaluation of an optogenetic construct in rat cortical astrocytes.
    Balachandar L; Borrego D; Diaz JR
    Biochem Biophys Res Commun; 2022 Feb; 593():35-39. PubMed ID: 35051780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector.
    Sakai S; Ueno K; Ishizuka T; Yawo H
    Neurosci Res; 2013 Jan; 75(1):59-64. PubMed ID: 22469653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic Engineering of Atrial Cardiomyocytes.
    Feola I; Teplenin A; de Vries AA; Pijnappels DA
    Methods Mol Biol; 2016; 1408():319-31. PubMed ID: 26965133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
    Hight AE; Kozin ED; Darrow K; Lehmann A; Boyden E; Brown MC; Lee DJ
    Hear Res; 2015 Apr; 322():235-41. PubMed ID: 25598479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording.
    Lee J; Ozden I; Song YK; Nurmikko AV
    Nat Methods; 2015 Dec; 12(12):1157-62. PubMed ID: 26457862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiologically responsive, mechanically adaptive polymer optical fibers for optogenetics.
    Jorfi M; Voirin G; Foster EJ; Weder C
    Opt Lett; 2014 May; 39(10):2872-5. PubMed ID: 24978225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation.
    Feng H; Shu W; Chen X; Zhang Y; Lu Y; Wang L; Chen Y
    Biomed Microdevices; 2015 Oct; 17(5):101. PubMed ID: 26371060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology.
    Aravanis AM; Wang LP; Zhang F; Meltzer LA; Mogri MZ; Schneider MB; Deisseroth K
    J Neural Eng; 2007 Sep; 4(3):S143-56. PubMed ID: 17873414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins.
    Inoue K
    Adv Exp Med Biol; 2021; 1293():89-126. PubMed ID: 33398809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Optogenetics with Stimulus Calibration.
    Coddington LT; Dudman JT
    Methods Mol Biol; 2021; 2188():273-283. PubMed ID: 33119857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical and thermal simulations for the design of optodes for minimally invasive optogenetics stimulation or photomodulation of deep and large cortical areas in non-human primate brain.
    Dubois A; Chiang CC; Smekens F; Jan S; Cuplov V; Palfi S; Chuang KS; Senova S; Pain F
    J Neural Eng; 2018 Dec; 15(6):065004. PubMed ID: 30190446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic Light Crafting Tools for the Control of Cardiac Arrhythmias.
    Richter C; Christoph J; Lehnart SE; Luther S
    Methods Mol Biol; 2016; 1408():293-302. PubMed ID: 26965131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics.
    Fenno LE; Gunaydin LA; Deisseroth K
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):537-48. PubMed ID: 26034299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.