These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 26965131)

  • 1. Optogenetic Light Crafting Tools for the Control of Cardiac Arrhythmias.
    Richter C; Christoph J; Lehnart SE; Luther S
    Methods Mol Biol; 2016; 1408():293-302. PubMed ID: 26965131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systemic gene transfer enables optogenetic pacing of mouse hearts.
    Vogt CC; Bruegmann T; Malan D; Ottersbach A; Roell W; Fleischmann BK; Sasse P
    Cardiovasc Res; 2015 May; 106(2):338-43. PubMed ID: 25587047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic manipulation of anatomical re-entry by light-guided generation of a reversible local conduction block.
    Watanabe M; Feola I; Majumder R; Jangsangthong W; Teplenin AS; Ypey DL; Schalij MJ; Zeppenfeld K; de Vries AA; Pijnappels DA
    Cardiovasc Res; 2017 Mar; 113(3):354-366. PubMed ID: 28395022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inscribing Optical Excitability to Non-Excitable Cardiac Cells: Viral Delivery of Optogenetic Tools in Primary Cardiac Fibroblasts.
    Yu J; Entcheva E
    Methods Mol Biol; 2016; 1408():303-17. PubMed ID: 26965132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic Engineering of Atrial Cardiomyocytes.
    Feola I; Teplenin A; de Vries AA; Pijnappels DA
    Methods Mol Biol; 2016; 1408():319-31. PubMed ID: 26965133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management.
    Nyns ECA; Kip A; Bart CI; Plomp JJ; Zeppenfeld K; Schalij MJ; de Vries AAF; Pijnappels DA
    Eur Heart J; 2017 Jul; 38(27):2132-2136. PubMed ID: 28011703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes.
    Bingen BO; Engels MC; Schalij MJ; Jangsangthong W; Neshati Z; Feola I; Ypey DL; Askar SF; Panfilov AV; Pijnappels DA; de Vries AA
    Cardiovasc Res; 2014 Oct; 104(1):194-205. PubMed ID: 25082848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Channelrhodopsins for Cell-Type Specific Illumination of Cardiac Electrophysiology.
    Fernández MC; Kopton RA; Simon-Chica A; Madl J; Hilgendorf I; Zgierski-Johnston CM; Schneider-Warme F
    Methods Mol Biol; 2021; 2191():287-307. PubMed ID: 32865751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic control of cardiomyocytes via viral delivery.
    Ambrosi CM; Entcheva E
    Methods Mol Biol; 2014; 1181():215-28. PubMed ID: 25070340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Will cardiac optogenetics find the way through the obscure angles of heart physiology?
    Pianca N; Zaglia T; Mongillo M
    Biochem Biophys Res Commun; 2017 Jan; 482(4):515-523. PubMed ID: 27871856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetics-enabled dynamic modulation of action potential duration in atrial tissue: feasibility of a novel therapeutic approach.
    Karathanos TV; Boyle PM; Trayanova NA
    Europace; 2014 Nov; 16 Suppl 4(Suppl 4):iv69-iv76. PubMed ID: 25362173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Manipulation of Perfused Mouse Heart Expressing Channelrhodopsin-2 in Rhythm Control.
    Wang X; Cheng Y
    Methods Mol Biol; 2021; 2191():377-390. PubMed ID: 32865755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetics for in vivo cardiac pacing and resynchronization therapies.
    Nussinovitch U; Gepstein L
    Nat Biotechnol; 2015 Jul; 33(7):750-4. PubMed ID: 26098449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins.
    Nussinovitch U; Shinnawi R; Gepstein L
    Cardiovasc Res; 2014 Apr; 102(1):176-87. PubMed ID: 24518144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical capture and defibrillation in rats with monocrotaline-induced myocardial fibrosis 1 year after a single intravenous injection of adeno-associated virus channelrhodopsin-2.
    Li J; Wang L; Luo J; Li H; Rao P; Cheng Y; Wang X; Huang C
    Heart Rhythm; 2021 Jan; 18(1):109-117. PubMed ID: 32781160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic targeting of cardiac myocytes and non-myocytes: Tools, challenges and utility.
    Johnston CM; Rog-Zielinska EA; Wülfers EM; Houwaart T; Siedlecka U; Naumann A; Nitschke R; Knöpfel T; Kohl P; Schneider-Warme F
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):140-149. PubMed ID: 28919131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human pluripotent stem cell tools for cardiac optogenetics.
    Zhuge Y; Patlolla B; Ramakrishnan C; Beygui RE; Zarins CK; Deisseroth K; Kuhl E; Abilez OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6171-4. PubMed ID: 25571406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-Reduced Arrhythmia Termination Using Global Photostimulation in Optogenetic Murine Hearts.
    Quiñonez Uribe RA; Luther S; Diaz-Maue L; Richter C
    Front Physiol; 2018; 9():1651. PubMed ID: 30542292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of ChannelRhodopsin-2.
    Zaglia T; Pianca N; Borile G; Da Broi F; Richter C; Campione M; Lehnart SE; Luther S; Corrado D; Miquerol L; Mongillo M
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):E4495-504. PubMed ID: 26204914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.