BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 26965134)

  • 1. A Multichannel Recording System with Optical Stimulation for Closed-Loop Optogenetic Experiments.
    Bartic C; Battaglia FP; Wang L; Nguyen TT; Cabral H; Navratilova Z
    Methods Mol Biol; 2016; 1408():333-44. PubMed ID: 26965134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards miniaturized closed-loop optogenetic stimulation devices.
    Edward ES; Kouzani AZ; Tye SJ
    J Neural Eng; 2018 Apr; 15(2):021002. PubMed ID: 29363618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording.
    Lee J; Ozden I; Song YK; Nurmikko AV
    Nat Methods; 2015 Dec; 12(12):1157-62. PubMed ID: 26457862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic Tools for Confined Stimulation in Deep Brain Structures.
    Castonguay A; Thomas S; Lesage F; Casanova C
    Methods Mol Biol; 2016; 1408():267-79. PubMed ID: 26965129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial Injection of an Optogenetics Viral Vector Followed by Optical Cannula Implantation for Neural Stimulation in Rat Brain Cortex.
    Pawela C; DeYoe E; Pashaie R
    Methods Mol Biol; 2016; 1408():227-41. PubMed ID: 26965126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated multi-electrode-optrode array for in vitro optogenetics.
    Welkenhuysen M; Hoffman L; Luo Z; De Proft A; Van den Haute C; Baekelandt V; Debyser Z; Gielen G; Puers R; Braeken D
    Sci Rep; 2016 Feb; 6():20353. PubMed ID: 26832455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closed-Loop Optogenetic Brain Interface.
    Pashaie R; Baumgartner R; Richner TJ; Brodnick SK; Azimipour M; Eliceiri KW; Williams JC
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2327-37. PubMed ID: 26011877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability.
    Gagnon-Turcotte G; Kisomi AA; Ameli R; Camaro CO; LeChasseur Y; Néron JL; Bareil PB; Fortier P; Bories C; de Koninck Y; Gosselin B
    Sensors (Basel); 2015 Sep; 15(9):22776-97. PubMed ID: 26371006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology.
    Budai D; Vizvári AD; Bali ZK; Márki B; Nagy LV; Kónya Z; Madarász D; Henn-Mike N; Varga C; Hernádi I
    PLoS One; 2018; 13(3):e0193836. PubMed ID: 29513711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fiber-optic two-photon optogenetic stimulation.
    Dhakal K; Gu L; Black B; Mohanty SK
    Opt Lett; 2013 Jun; 38(11):1927-9. PubMed ID: 23722792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications.
    Guo B; Fan Y; Wang M; Cheng Y; Ji B; Chen Y; Wang G
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D silicon neural probe with integrated optical fibers for optogenetic modulation.
    Kim EG; Tu H; Luo H; Liu B; Bao S; Zhang J; Xu Y
    Lab Chip; 2015 Jul; 15(14):2939-49. PubMed ID: 26097907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics.
    Pisanello F; Sileo L; Oldenburg IA; Pisanello M; Martiradonna L; Assad JA; Sabatini BL; De Vittorio M
    Neuron; 2014 Jun; 82(6):1245-54. PubMed ID: 24881834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical developments for optogenetics.
    Papagiakoumou E
    Biol Cell; 2013 Oct; 105(10):443-64. PubMed ID: 23782010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for combining multiple-units readout of optogenetic control with natural stimulation-evoked eyeblink conditioning in freely-moving mice.
    Zhang J; Zhang KY; Zhang LB; Zhang WW; Feng H; Yao ZX; Hu B; Chen H
    Sci Rep; 2019 Feb; 9(1):1857. PubMed ID: 30755637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures.
    Tamura K; Ohashi Y; Tsubota T; Takeuchi D; Hirabayashi T; Yaguchi M; Matsuyama M; Sekine T; Miyashita Y
    J Neurosci Methods; 2012 Oct; 211(1):49-57. PubMed ID: 22971353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates.
    Ozden I; Wang J; Lu Y; May T; Lee J; Goo W; O'Shea DJ; Kalanithi P; Diester I; Diagne M; Deisseroth K; Shenoy KV; Nurmikko AV
    J Neurosci Methods; 2013 Sep; 219(1):142-54. PubMed ID: 23867081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optrode Array for Simultaneous Optogenetic Modulation and Electrical Neural Recording.
    Lee Y; Ryu D; Jeon S; Lee Y; Cho YK; Ji CH; Kim YK; Jun SB
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36121270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multichannel optogenetics combined with laminar recordings for ultra-controlled neuronal interrogation.
    Eriksson D; Schneider A; Thirumalai A; Alyahyay M; de la Crompe B; Sharma K; Ruther P; Diester I
    Nat Commun; 2022 Feb; 13(1):985. PubMed ID: 35190556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.