These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 26965146)
1. Contribution of K(+) channels to endothelium-derived hypolarization-induced renal vasodilation in rats in vivo and in vitro. Rasmussen KMB; Braunstein TH; Salomonsson M; Brasen JC; Sorensen CM Pflugers Arch; 2016 Jul; 468(7):1139-1149. PubMed ID: 26965146 [TBL] [Abstract][Full Text] [Related]
2. Sex differences in endothelial function in porcine coronary arteries: a role for H2O2 and gap junctions? Wong PS; Roberts RE; Randall MD Br J Pharmacol; 2014 Jun; 171(11):2751-66. PubMed ID: 24467384 [TBL] [Abstract][Full Text] [Related]
3. Cooling-induced dilatation of cutaneous arteries is mediated by increased myoendothelial communication. Flavahan S; Flavahan NA Am J Physiol Heart Circ Physiol; 2020 Jul; 319(1):H123-H132. PubMed ID: 32469638 [TBL] [Abstract][Full Text] [Related]
4. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats. Jiang F; Dusting GJ Br J Pharmacol; 2001 Apr; 132(7):1558-64. PubMed ID: 11264250 [TBL] [Abstract][Full Text] [Related]
5. Upregulation of heme oxygenase-1 potentiates EDH-type relaxations in the mesenteric artery of the spontaneously hypertensive rat. Li Z; Wang Y; Man RY; Vanhoutte PM Am J Physiol Heart Circ Physiol; 2013 Nov; 305(10):H1471-83. PubMed ID: 24014672 [TBL] [Abstract][Full Text] [Related]
6. Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF. Wang X; Loutzenhiser R Am J Physiol Renal Physiol; 2002 Jan; 282(1):F124-32. PubMed ID: 11739120 [TBL] [Abstract][Full Text] [Related]
7. Myoendothelial coupling through Cx40 contributes to EDH-induced vasodilation in murine renal arteries: evidence from experiments and modelling. Brasen JC; de Wit C; Sorensen CM Acta Physiol (Oxf); 2018 Jan; 222(1):. PubMed ID: 28613412 [TBL] [Abstract][Full Text] [Related]
8. Role of calcium-activated potassium channels in acetylcholine-induced vasodilation of rat retinal arterioles in vivo. Mori A; Suzuki S; Sakamoto K; Nakahara T; Ishii K Naunyn Schmiedebergs Arch Pharmacol; 2011 Jan; 383(1):27-34. PubMed ID: 20978884 [TBL] [Abstract][Full Text] [Related]
9. Type 2 diabetes: increased expression and contribution of IKCa channels to vasodilation in small mesenteric arteries of ZDF rats. Schach C; Resch M; Schmid PM; Riegger GA; Endemann DH Am J Physiol Heart Circ Physiol; 2014 Oct; 307(8):H1093-102. PubMed ID: 25128173 [TBL] [Abstract][Full Text] [Related]
11. Involvement of Gap Junctions in Acetylcholine-Induced Endothelium-Derived Hyperpolarization-Type Dilation of Retinal Arterioles in Rats. Mori A; Namekawa R; Sakamoto K; Ishii K; Nakahara T Biol Pharm Bull; 2021; 44(12):1860-1865. PubMed ID: 34853268 [TBL] [Abstract][Full Text] [Related]
12. Protease-activated receptor 2 and bradykinin-mediated vasodilation in the cerebral arteries of stroke-prone rats. Smeda JS; McGuire JJ; Daneshtalab N Peptides; 2010 Feb; 31(2):227-37. PubMed ID: 19954757 [TBL] [Abstract][Full Text] [Related]
13. Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Dora KA; Gallagher NT; McNeish A; Garland CJ Circ Res; 2008 May; 102(10):1247-55. PubMed ID: 18403729 [TBL] [Abstract][Full Text] [Related]
14. A role for the sodium pump in H2O2-induced vasorelaxation in porcine isolated coronary arteries. Wong PS; Garle MJ; Alexander SP; Randall MD; Roberts RE Pharmacol Res; 2014 Dec; 90():25-35. PubMed ID: 25258292 [TBL] [Abstract][Full Text] [Related]
15. Increased inward rectifier K Kim HJ; Yin MZ; Cho S; Kim SE; Choi SW; Ye SK; Yoo HY; Kim SJ Clin Exp Pharmacol Physiol; 2020 Jan; 47(1):38-48. PubMed ID: 31444788 [TBL] [Abstract][Full Text] [Related]
16. Downregulation of Endothelial Transient Receptor Potential Vanilloid Type 4 Channel and Small-Conductance of Ca2+-Activated K+ Channels Underpins Impaired Endothelium-Dependent Hyperpolarization in Hypertension. Seki T; Goto K; Kiyohara K; Kansui Y; Murakami N; Haga Y; Ohtsubo T; Matsumura K; Kitazono T Hypertension; 2017 Jan; 69(1):143-153. PubMed ID: 27872234 [TBL] [Abstract][Full Text] [Related]
18. Acid-sensing ion channel 1a activates IKCa/SKCa channels and contributes to endothelium-dependent dilation. Garcia SM; Naik JS; Resta TC; Jernigan NL J Gen Physiol; 2023 Feb; 155(2):. PubMed ID: 36484717 [TBL] [Abstract][Full Text] [Related]
19. Cl Lu C; Zhang L; Chen X; Wan H; Dong H Life Sci; 2023 Oct; 330():121942. PubMed ID: 37451399 [TBL] [Abstract][Full Text] [Related]
20. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Zygmunt PM; Högestätt ED Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]