These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26965319)

  • 1. Enhancing the ballistic thermal transport of silicene through smooth interface coupling.
    Chen CY; She Y; Xiao H; Ding J; Cao J; Guo ZX
    J Phys Condens Matter; 2016 Apr; 28(14):145003. PubMed ID: 26965319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon.
    Zhang X; Bao H; Hu M
    Nanoscale; 2015 Apr; 7(14):6014-22. PubMed ID: 25762032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene.
    Kuang YD; Lindsay L; Shi SQ; Zheng GP
    Nanoscale; 2016 Feb; 8(6):3760-7. PubMed ID: 26815838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.
    Wang X; Hong Y; Chan PKL; Zhang J
    Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering.
    Barati M; Vazifehshenas T; Salavati-Fard T; Farmanbar M
    J Phys Condens Matter; 2018 Apr; 30(15):155307. PubMed ID: 29504943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of thermal conductivity in silicene nanomesh: insights from coherent and incoherent phonon transport.
    Cui L; Shi S; Li Z; Wei G; Du X
    Phys Chem Chem Phys; 2018 Oct; 20(42):27169-27175. PubMed ID: 30338327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ballistic Thermal Transport in Carbyne and Cumulene with Micron-Scale Spectral Acoustic Phonon Mean Free Path.
    Wang M; Lin S
    Sci Rep; 2015 Dec; 5():18122. PubMed ID: 26658143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics study of interfacial thermal transport between silicene and substrates.
    Zhang J; Hong Y; Tong Z; Xiao Z; Bao H; Yue Y
    Phys Chem Chem Phys; 2015 Oct; 17(37):23704-10. PubMed ID: 26266456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexural and acoustic phonon-drag thermopower and electron energy loss rate in silicene.
    Ansari M; Ashraf SSZ; Tripathi P; Ahmad A
    J Phys Condens Matter; 2024 May; 36(31):. PubMed ID: 38657621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures.
    Yan Z; Chen L; Yoon M; Kumar S
    Nanoscale; 2016 Feb; 8(7):4037-46. PubMed ID: 26817419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX; Liu JT; Guo SD; Li HC
    Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of strong phonon-phonon coupling on the temperature dependent structural stability and frequency shift of 2D hexagonal boron nitride.
    Anees P; Valsakumar MC; Panigrahi BK
    Phys Chem Chem Phys; 2016 Jan; 18(4):2672-81. PubMed ID: 26705543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-low lattice thermal conductivity of monolayer penta-silicene and penta-germanene.
    Gao Z; Zhang Z; Liu G; Wang JS
    Phys Chem Chem Phys; 2019 Dec; 21(47):26033-26040. PubMed ID: 31746866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polar effects on the thermal conductivity of cubic boron nitride under pressure.
    Mukhopadhyay S; Stewart DA
    Phys Rev Lett; 2014 Jul; 113(2):025901. PubMed ID: 25062211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.
    Noshin M; Khan AI; Subrina S
    Nanotechnology; 2018 May; 29(18):185706. PubMed ID: 29438099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon mode contributions to thermal conductivity of pristine and defective β-Ga
    Yan Z; Kumar S
    Phys Chem Chem Phys; 2018 Nov; 20(46):29236-29242. PubMed ID: 30427340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation.
    Liu B; Baimova JA; Reddy CD; Law AW; Dmitriev SV; Wu H; Zhou K
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18180-8. PubMed ID: 25308778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene.
    Peng B; Zhang H; Shao H; Xu Y; Zhang R; Lu H; Zhang DW; Zhu H
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20977-85. PubMed ID: 27460331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.