BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 26965451)

  • 1. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models.
    Piao Y; Park SY; Henry V; Smith BD; Tiao N; Flynn DL; de Groot JF
    Neuro Oncol; 2016 Sep; 18(9):1230-41. PubMed ID: 26965451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altiratinib Inhibits Tumor Growth, Invasion, Angiogenesis, and Microenvironment-Mediated Drug Resistance via Balanced Inhibition of MET, TIE2, and VEGFR2.
    Smith BD; Kaufman MD; Leary CB; Turner BA; Wise SC; Ahn YM; Booth RJ; Caldwell TM; Ensinger CL; Hood MM; Lu WP; Patt TW; Patt WC; Rutkoski TJ; Samarakoon T; Telikepalli H; Vogeti L; Vogeti S; Yates KM; Chun L; Stewart LJ; Clare M; Flynn DL
    Mol Cancer Ther; 2015 Sep; 14(9):2023-34. PubMed ID: 26285778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy.
    Castro BA; Flanigan P; Jahangiri A; Hoffman D; Chen W; Kuang R; De Lay M; Yagnik G; Wagner JR; Mascharak S; Sidorov M; Shrivastav S; Kohanbash G; Okada H; Aghi MK
    Oncogene; 2017 Jun; 36(26):3749-3759. PubMed ID: 28218903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroblast growth factor 13 regulates glioma cell invasion and is important for bevacizumab-induced glioma invasion.
    Otani Y; Ichikawa T; Kurozumi K; Inoue S; Ishida J; Oka T; Shimizu T; Tomita Y; Hattori Y; Uneda A; Matsumoto Y; Michiue H; Date I
    Oncogene; 2018 Feb; 37(6):777-786. PubMed ID: 29059154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VEGF-C sustains VEGFR2 activation under bevacizumab therapy and promotes glioblastoma maintenance.
    Michaelsen SR; Staberg M; Pedersen H; Jensen KE; Majewski W; Broholm H; Nedergaard MK; Meulengracht C; Urup T; Villingshøj M; Lukacova S; Skjøth-Rasmussen J; Brennum J; Kjær A; Lassen U; Stockhausen MT; Poulsen HS; Hamerlik P
    Neuro Oncol; 2018 Oct; 20(11):1462-1474. PubMed ID: 29939339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced cancer therapy with the combination of EGFR and VEGFR-2 targeting in an orthotopic glioblastoma model.
    Diao Y; Tian XH; Huang YL; Chen LK; Lin XN; Zhuang ZW
    J Chemother; 2010 Dec; 22(6):407-12. PubMed ID: 21303749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer.
    Takeuchi S; Wang W; Li Q; Yamada T; Kita K; Donev IS; Nakamura T; Matsumoto K; Shimizu E; Nishioka Y; Sone S; Nakagawa T; Uenaka T; Yano S
    Am J Pathol; 2012 Sep; 181(3):1034-43. PubMed ID: 22789825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma.
    Kessler T; Sahm F; Blaes J; Osswald M; Rübmann P; Milford D; Urban S; Jestaedt L; Heiland S; Bendszus M; Hertenstein A; Pfenning PN; Ruiz de Almodóvar C; Wick A; Winkler F; von Deimling A; Platten M; Wick W; Weiler M
    Oncotarget; 2015 Oct; 6(31):31050-68. PubMed ID: 25682871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma.
    Zhang M; Kleber S; Röhrich M; Timke C; Han N; Tuettenberg J; Martin-Villalba A; Debus J; Peschke P; Wirkner U; Lahn M; Huber PE
    Cancer Res; 2011 Dec; 71(23):7155-67. PubMed ID: 22006998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype.
    Piao Y; Liang J; Holmes L; Zurita AJ; Henry V; Heymach JV; de Groot JF
    Neuro Oncol; 2012 Nov; 14(11):1379-92. PubMed ID: 22965162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic profiling of a Hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma.
    Johnson J; Ascierto ML; Mittal S; Newsome D; Kang L; Briggs M; Tanner K; Marincola FM; Berens ME; Vande Woude GF; Xie Q
    J Transl Med; 2015 Sep; 13():306. PubMed ID: 26381735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance.
    Jahangiri A; De Lay M; Miller LM; Carbonell WS; Hu YL; Lu K; Tom MW; Paquette J; Tokuyasu TA; Tsao S; Marshall R; Perry A; Bjorgan KM; Chaumeil MM; Ronen SM; Bergers G; Aghi MK
    Clin Cancer Res; 2013 Apr; 19(7):1773-83. PubMed ID: 23307858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells' VEGF production and angiogenesis.
    Bota DA; Alexandru D; Keir ST; Bigner D; Vredenburgh J; Friedman HS
    J Neurosurg; 2013 Dec; 119(6):1415-23. PubMed ID: 24093630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clonal ZEB1-Driven Mesenchymal Transition Promotes Targetable Oncologic Antiangiogenic Therapy Resistance.
    Chandra A; Jahangiri A; Chen W; Nguyen AT; Yagnik G; Pereira MP; Jain S; Garcia JH; Shah SS; Wadhwa H; Joshi RS; Weiss J; Wolf KJ; Lin JG; Müller S; Rick JW; Diaz AA; Gilbert LA; Kumar S; Aghi MK
    Cancer Res; 2020 Apr; 80(7):1498-1511. PubMed ID: 32041837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soluble Tie2 overrides the heightened invasion induced by anti-angiogenesis therapies in gliomas.
    Cortes-Santiago N; Hossain MB; Gabrusiewicz K; Fan X; Gumin J; Marini FC; Alonso MM; Lang F; Yung WK; Fueyo J; Gomez-Manzano C
    Oncotarget; 2016 Mar; 7(13):16146-57. PubMed ID: 26910374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interferon-regulatory factor-1 (IRF1) regulates bevacizumab induced autophagy.
    Liang J; Piao Y; Henry V; Tiao N; de Groot JF
    Oncotarget; 2015 Oct; 6(31):31479-92. PubMed ID: 26362401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases.
    Qian F; Engst S; Yamaguchi K; Yu P; Won KA; Mock L; Lou T; Tan J; Li C; Tam D; Lougheed J; Yakes FM; Bentzien F; Xu W; Zaks T; Wooster R; Greshock J; Joly AH
    Cancer Res; 2009 Oct; 69(20):8009-16. PubMed ID: 19808973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lenvatinib in combination with golvatinib overcomes hepatocyte growth factor pathway-induced resistance to vascular endothelial growth factor receptor inhibitor.
    Nakagawa T; Matsushima T; Kawano S; Nakazawa Y; Kato Y; Adachi Y; Abe T; Semba T; Yokoi A; Matsui J; Tsuruoka A; Funahashi Y
    Cancer Sci; 2014 Jun; 105(6):723-30. PubMed ID: 24689876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. YM-359445, an orally bioavailable vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor, has highly potent antitumor activity against established tumors.
    Amino N; Ideyama Y; Yamano M; Kuromitsu S; Tajinda K; Samizu K; Hisamichi H; Matsuhisa A; Shirasuna K; Kudoh M; Shibasaki M
    Clin Cancer Res; 2006 Mar; 12(5):1630-8. PubMed ID: 16533791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of Combination Therapy with MET and VEGF Inhibitors for MET-overexpressing Glioblastoma.
    Okuda T; Tasaki T; Nakata S; Yamashita K; Yoshioka H; Izumoto S; Kato A; Fujita M
    Anticancer Res; 2017 Jul; 37(7):3871-3876. PubMed ID: 28668888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.