These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26965726)

  • 41. Exploring substrate scope and stereoselectivity of P450 peroxygenase OleTJE in olefin-forming oxidative decarboxylation.
    Wang JB; Lonsdale R; Reetz MT
    Chem Commun (Camb); 2016 Jun; 52(52):8131-3. PubMed ID: 27271555
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular Basis for Chemoselectivity Control in Oxidations of Internal Aryl-Alkenes Catalyzed by Laboratory Evolved P450s.
    Soler J; Gergel S; Hammer SC; Garcia-Borràs M
    Chembiochem; 2024 May; 25(10):e202400066. PubMed ID: 38567500
    [TBL] [Abstract][Full Text] [Related]  

  • 43. P450 fatty acid decarboxylase.
    Jiang Y; Li S
    Methods Enzymol; 2023; 693():339-374. PubMed ID: 37977736
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms.
    Kang MK; Nielsen J
    J Ind Microbiol Biotechnol; 2017 May; 44(4-5):613-622. PubMed ID: 27565672
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain.
    Ensign SA; Hyman MR; Arp DJ
    Appl Environ Microbiol; 1992 Sep; 58(9):3038-46. PubMed ID: 1444418
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Theoretical Insights into the Mechanism and Stereoselectivity of Olefin Cyclopropanation Catalyzed by Two Engineered Cytochrome P450 Enzymes.
    Su H; Ma G; Liu Y
    Inorg Chem; 2018 Sep; 57(18):11738-11745. PubMed ID: 30156099
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase.
    Peter S; Kinne M; Ullrich R; Kayser G; Hofrichter M
    Enzyme Microb Technol; 2013 May; 52(6-7):370-6. PubMed ID: 23608506
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anti-Markovnikov alkene oxidation by metal-oxo-mediated enzyme catalysis.
    Hammer SC; Kubik G; Watkins E; Huang S; Minges H; Arnold FH
    Science; 2017 Oct; 358(6360):215-218. PubMed ID: 29026041
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450.
    Matsunaga I; Ueda A; Sumimoto T; Ichihara K; Ayata M; Ogura H
    Arch Biochem Biophys; 2001 Oct; 394(1):45-53. PubMed ID: 11566026
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Products of cytochrome P450(BioI) (CYP107H1)-catalyzed oxidation of fatty acids.
    Cryle MJ; Matovic NJ; De Voss JJ
    Org Lett; 2003 Sep; 5(18):3341-4. PubMed ID: 12943422
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How do aldehyde side products occur during alkene epoxidation by cytochrome P450? Theory reveals a state-specific multi-state scenario where the high-spin component leads to all side products.
    de Visser SP; Kumar D; Shaik S
    J Inorg Biochem; 2004 Jul; 98(7):1183-93. PubMed ID: 15219984
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anaerobic oxidation of n-alkenes by sulphate-reducing bacteria from the genus Desulfatiferula: n-ketones as potential metabolites.
    Grossi V; Cravo-Laureau C; Rontani JF; Cros M; Hirschler-Réa A
    Res Microbiol; 2011 Nov; 162(9):915-22. PubMed ID: 21810468
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cytochrome P-450-catalyzed asymmetric epoxidation of simple prochiral and chiral aliphatic alkenes: species dependence and effect of enzyme induction on enantioselective oxirane formation.
    Wistuba D; Nowotny HP; Träger O; Schurig V
    Chirality; 1989; 1(2):127-36. PubMed ID: 2642041
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expanding the substrate scope and reactivity of cytochrome P450 OleT.
    Hsieh CH; Makris TM
    Biochem Biophys Res Commun; 2016 Aug; 476(4):462-466. PubMed ID: 27246733
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanistic enzymology of oxygen activation by the cytochromes P450.
    Makris TM; Davydov R; Denisov IG; Hoffman BM; Sligar SG
    Drug Metab Rev; 2002 Nov; 34(4):691-708. PubMed ID: 12487147
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolism of halogenated alkanes by cytochrome P450 enzymes. Aerobic oxidation versus anaerobic reduction.
    Ji L; Zhang J; Liu W; de Visser SP
    Chem Asian J; 2014 Apr; 9(4):1175-82. PubMed ID: 24501011
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aromatic C-H bond hydroxylation by P450 peroxygenases: a facile colorimetric assay for monooxygenation activities of enzymes based on Russig's blue formation.
    Shoji O; Wiese C; Fujishiro T; Shirataki C; Wünsch B; Watanabe Y
    J Biol Inorg Chem; 2010 Sep; 15(7):1109-15. PubMed ID: 20490877
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Light-driven Enzymatic Decarboxylation.
    Köninger K; Grote M; Zachos I; Hollmann F; Kourist R
    J Vis Exp; 2016 May; (111):. PubMed ID: 27286035
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions.
    Guengerich FP
    Arch Biochem Biophys; 2003 Jan; 409(1):59-71. PubMed ID: 12464245
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural determinants of active site binding affinity and metabolism by cytochrome P450 BM-3.
    Cowart LA; Falck JR; Capdevila JH
    Arch Biochem Biophys; 2001 Mar; 387(1):117-24. PubMed ID: 11368173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.