These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2696574)

  • 41. Glia-neuron intercommunications and synaptic plasticity.
    Vernadakis A
    Prog Neurobiol; 1996 Jun; 49(3):185-214. PubMed ID: 8878303
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Brainstem Tau Cytoskeletal Pathology of Alzheimer's Disease: A Brief Historical Overview and Description of its Anatomical Distribution Pattern, Evolutional Features, Pathogenetic and Clinical Relevance.
    Rüb U; Stratmann K; Heinsen H; Turco DD; Seidel K; Dunnen Wd; Korf HW
    Curr Alzheimer Res; 2016; 13(10):1178-97. PubMed ID: 27264543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reactive Astrocytes as Drug Target in Alzheimer's Disease.
    Assefa BT; Gebre AK; Altaye BM
    Biomed Res Int; 2018; 2018():4160247. PubMed ID: 29888263
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Autonomic control of neuronal-astrocytic interactions, regulating metabolic activities, and ion fluxes in the CNS.
    Hertz L
    Brain Res Bull; 1992; 29(3-4):303-13. PubMed ID: 1393603
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Brain lesions, pathogenic and etiologic hypotheses of Alzheimer's disease].
    Dessi F; Colle MA; Hauw JJ; Duyckaerts C
    Rev Prat; 1998 Nov; 48(17):1873-8. PubMed ID: 9854388
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Apoptotic cell death in neurons and glial cells: implications for Alzheimer's disease.
    Kitamura Y; Taniguchi T; Shimohama S
    Jpn J Pharmacol; 1999 Jan; 79(1):1-5. PubMed ID: 10082311
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease.
    Agostinho P; Cunha RA; Oliveira C
    Curr Pharm Des; 2010; 16(25):2766-78. PubMed ID: 20698820
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pathological and biochemical alterations of astrocytes in ovariectomized rats injected with D-galactose: a potential contribution to Alzheimer's disease processes.
    Hua X; Lei M; Ding J; Han Q; Hu G; Xiao M
    Exp Neurol; 2008 Apr; 210(2):709-18. PubMed ID: 18289535
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New perspectives on Alzheimer's disease.
    Price DL
    Annu Rev Neurosci; 1986; 9():489-512. PubMed ID: 3518588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neuropathological study of the dorsal raphe nuclei in late-life depression and Alzheimer's disease with and without depression.
    Hendricksen M; Thomas AJ; Ferrier IN; Ince P; O'Brien JT
    Am J Psychiatry; 2004 Jun; 161(6):1096-102. PubMed ID: 15169699
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An integrative hypothesis concerning the pathogenesis and progression of Alzheimer's disease.
    Hardy JA; Mann DM; Wester P; Winblad B
    Neurobiol Aging; 1986; 7(6):489-502. PubMed ID: 2882432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Turning on the Light Within: Subcortical Nuclei of the Isodentritic Core and their Role in Alzheimer's Disease Pathogenesis.
    Theofilas P; Dunlop S; Heinsen H; Grinberg LT
    J Alzheimers Dis; 2015; 46(1):17-34. PubMed ID: 25720408
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Specific neurochemical derangements of brain projecting neurons in apolipoprotein E-deficient mice.
    Chapman S; Michaelson DM
    J Neurochem; 1998 Feb; 70(2):708-14. PubMed ID: 9453565
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glial cells are functionally impaired in juvenile neuronal ceroid lipofuscinosis and detrimental to neurons.
    Parviainen L; Dihanich S; Anderson GW; Wong AM; Brooks HR; Abeti R; Rezaie P; Lalli G; Pope S; Heales SJ; Mitchison HM; Williams BP; Cooper JD
    Acta Neuropathol Commun; 2017 Oct; 5(1):74. PubMed ID: 29041969
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pathological immuno-reactions of glial cells in Alzheimer's disease and possible sites of interference.
    Schubert P; Ogata T; Miyazaki H; Marchini C; Ferroni S; Rudolphi K
    J Neural Transm Suppl; 1998; 54():167-74. PubMed ID: 9850925
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Serotonergic input to cholinergic neurons in the substantia innominata and nucleus basalis magnocellularis in the rat.
    Gasbarri A; Sulli A; Pacitti C; McGaugh JL
    Neuroscience; 1999; 91(3):1129-42. PubMed ID: 10391489
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer's disease.
    Arendt T; Bigl V; Tennstedt A; Arendt A
    Neuroscience; 1985 Jan; 14(1):1-14. PubMed ID: 3974875
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synaptic degeneration in Alzheimer's disease.
    Arendt T
    Acta Neuropathol; 2009 Jul; 118(1):167-79. PubMed ID: 19390859
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Calcium and neuronal injury in Alzheimer's disease. Contributions of beta-amyloid precursor protein mismetabolism, free radicals, and metabolic compromise.
    Mattson MP
    Ann N Y Acad Sci; 1994 Dec; 747():50-76. PubMed ID: 7847692
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glial intranuclear inclusion bodies in a patient with Alzheimer's disease.
    al-Maghrabi J; Tierney M; Ang LC
    Acta Neuropathol; 2000 Jun; 99(6):695-8. PubMed ID: 10867805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.