These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26965940)

  • 1. Novel 3-Dimensional Vessel and Scaffold Reconstruction Methodology for the Assessment of Strut-Level Wall Shear Stress After Deployment of Bioresorbable Vascular Scaffolds From the ABSORB III Imaging Substudy.
    Gogas BD; Yang B; Piccinelli M; Giddens DP; King SB; Kereiakes DJ; Ellis SG; Stone GW; Veneziani A; Samady H
    JACC Cardiovasc Interv; 2016 Mar; 9(5):501-3. PubMed ID: 26965940
    [No Abstract]   [Full Text] [Related]  

  • 2. Strut protrusion and shape impact on endothelial shear stress: insights from pre-clinical study comparing Mirage and Absorb bioresorbable scaffolds.
    Tenekecioglu E; Sotomi Y; Torii R; Bourantas C; Miyazaki Y; Collet C; Crake T; Su S; Onuma Y; Serruys PW
    Int J Cardiovasc Imaging; 2017 Sep; 33(9):1313-1322. PubMed ID: 28365819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-implantation shear stress assessment: an emerging tool for differentiation of bioresorbable scaffolds.
    Tenekecioglu E; Torii R; Katagiri Y; Chichareon P; Asano T; Miyazaki Y; Takahashi K; Modolo R; Al-Lamee R; Al-Lamee K; Colet C; Reiber JHC; Pekkan K; van Geuns R; Bourantas CV; Onuma Y; Serruys PW
    Int J Cardiovasc Imaging; 2019 Mar; 35(3):409-418. PubMed ID: 30426299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical assessment of fully bioresorbable devices.
    Gogas BD; King SB; Timmins LH; Passerini T; Piccinelli M; Veneziani A; Kim S; Molony DS; Giddens DP; Serruys PW; Samady H
    JACC Cardiovasc Interv; 2013 Jul; 6(7):760-1. PubMed ID: 23866188
    [No Abstract]   [Full Text] [Related]  

  • 5. Short- and long-term implications of a bioresorbable vascular scaffold implantation on the local endothelial shear stress patterns.
    Bourantas CV; Papafaklis MI; Garcia-Garcia HM; Farooq V; Diletti R; Muramatsu T; Zhang Y; Kalatzis FG; Naka KK; Fotiadis DI; Onuma Y; Michalis LK; Serruys PW
    JACC Cardiovasc Interv; 2014 Jan; 7(1):100-1. PubMed ID: 24456718
    [No Abstract]   [Full Text] [Related]  

  • 6. Serial assessment of bioresorbable-polymer sirolimus-eluting stent by coronary angioscopy and optical coherence tomography.
    Nakamura S; Kimura S; Nakagama S; Hayashi Y; Yamamoto T; Utsugi Y; Doi J; Mizusawa M; Araki M; Sudo Y; Hishikari K; Hikita H; Takahashi A; Isobe M
    Coron Artery Dis; 2017 Sep; 28(6):530-531. PubMed ID: 28402989
    [No Abstract]   [Full Text] [Related]  

  • 7. Persistent Bioresorbable Vascular Scaffold by Optical Coherence Tomography Imaging at 5 Years.
    Moriyama N; Shishido K; Tobita K; Takada T; Ochiai T; Tsukuda S; Yamanaka F; Sugitatsu K; Mizuno S; Tanaka Y; Murakami M; Matsumi J; Takahashi S; Akasaka T; Saito S
    JACC Cardiovasc Interv; 2017 Jan; 10(2):e11-e13. PubMed ID: 28040440
    [No Abstract]   [Full Text] [Related]  

  • 8. Serial 2-dimensional and 3-dimensional optical coherence tomography assessment of overhanging struts of drug-eluting absorbable metal scaffold: "DREAMS" for jailed side branch?
    Muramatsu T; García-García HM; Serruys PW; Waksman R; Verheye S;
    JACC Cardiovasc Interv; 2014 May; 7(5):575-6. PubMed ID: 24852807
    [No Abstract]   [Full Text] [Related]  

  • 9. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial.
    Onuma Y; Dudek D; Thuesen L; Webster M; Nieman K; Garcia-Garcia HM; Ormiston JA; Serruys PW
    JACC Cardiovasc Interv; 2013 Oct; 6(10):999-1009. PubMed ID: 24156961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results.
    Verheye S; Ormiston JA; Stewart J; Webster M; Sanidas E; Costa R; Costa JR; Chamie D; Abizaid AS; Pinto I; Morrison L; Toyloy S; Bhat V; Yan J; Abizaid A
    JACC Cardiovasc Interv; 2014 Jan; 7(1):89-99. PubMed ID: 24139932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of coronary computed tomography angiography for bioresorbable scaffold luminal investigation: a comparison with optical coherence tomography.
    Collet C; Sotomi Y; Cavalcante R; Asano T; Miyazaki Y; Tenekecioglu E; Kistlaar P; Zeng Y; Suwanasson P; de Winter RJ; Nieman K; Serruys PW; Onuma Y
    Int J Cardiovasc Imaging; 2017 Mar; 33(3):431-439. PubMed ID: 27896495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Difference in haemodynamic microenvironment in vessels scaffolded with Absorb BVS and Mirage BRMS: insights from a preclinical endothelial shear stress study.
    Tenekecioglu E; Torii R; Bourantas C; Sotomi Y; Cavalcante R; Zeng Y; Collet C; Crake T; Suwannasom P; Onuma Y; Serruys PW
    EuroIntervention; 2017 Dec; 13(11):1327-1335. PubMed ID: 28590249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early neoatherosclerosis after bioresorbable vascular scaffold implantation: insights from optical coherence tomography.
    Sato T; Richardt G; Abdel-Wahab M
    Coron Artery Dis; 2016 Nov; 27(7):616-7. PubMed ID: 27228185
    [No Abstract]   [Full Text] [Related]  

  • 14. Very Late Restenosis Following Bioresorbable Scaffold Implantation.
    Okuno T; Yahagi K; Horiuchi Y; Aoki J; Simonton CA; Rapoza R; Saito S; Kimura T; Tanabe K
    JACC Cardiovasc Interv; 2017 Sep; 10(18):e167-e169. PubMed ID: 28866033
    [No Abstract]   [Full Text] [Related]  

  • 15. First in human evaluation of the vascular biocompatibility and biomechanical performance of a novel ultra high molecular weight amorphous PLLA bioresorbable scaffold in the absence of anti-proliferative drugs: Two-year imaging results in humans.
    Moncada M; Delgado JA; Colombo A; Gasior P; Ramzipoor K; Estrada A; Lee C; Dokko D; Granada JF
    Catheter Cardiovasc Interv; 2018 Sep; 92(3):E246-E253. PubMed ID: 29243353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic analysis of a novel bioresorbable scaffold in porcine coronary artery model.
    Tenekecioglu E; Torii R; Bourantas CV; Cavalcante R; Sotomi Y; Zeng Y; Collet C; Crake T; Abizaid A; Onuma Y; Su S; Santoso T; Serruys PW
    Catheter Cardiovasc Interv; 2018 May; 91(6):1084-1091. PubMed ID: 28843033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of coronary bifurcation lesions with the Absorb bioresorbable vascular scaffold in combination with the Tryton dedicated coronary bifurcation stent: evaluation using two- and three-dimensional optical coherence tomography.
    Grundeken MJ; Hassell ME; Kraak RP; de Bruin DM; Koch KT; Henriques JP; van Leeuwen TG; Tijssen JG; Piek JJ; de Winter RJ; Wykrzykowska JJ
    EuroIntervention; 2015 Dec; 11(8):877-84. PubMed ID: 25169592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-scaffold restenosis in a previous left main bifurcation lesion treated with bioresorbable scaffold v-stenting.
    Miyazaki T; Panoulas VF; Sato K; Kawamoto H; Naganuma T; Latib A; Colombo A
    JACC Cardiovasc Interv; 2015 Jan; 8(1 Pt A):e7-e10. PubMed ID: 25499306
    [No Abstract]   [Full Text] [Related]  

  • 19. Migrated remnant bioresorbable scaffolds in a left main bifurcation lesion: Insights from optical coherence tomography.
    Seo J; Kim Y; Kim BK; Hong SJ; Ahn CM; Kim JS; Cho DK; Ko YG; Choi D; Hong MK; Jang Y
    Cardiol J; 2020; 27(2):208-209. PubMed ID: 32463107
    [No Abstract]   [Full Text] [Related]  

  • 20. Optical Coherence Tomography for Coronary Bioresorbable Vascular Scaffold Implantation: A Randomized Controlled Trial.
    Lee SY; Kang DY; Hong SJ; Ahn JM; Ahn CM; Park DW; Kim JS; Kim BK; Ko YG; Choi D; Jang Y; Park SJ; Hong MK
    Circ Cardiovasc Interv; 2020 Jan; 13(1):e008383. PubMed ID: 32525410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.