These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 26966073)
1. The ratio of intracellular CRY proteins determines the clock period length. Li Y; Xiong W; Zhang EE Biochem Biophys Res Commun; 2016 Apr; 472(3):531-8. PubMed ID: 26966073 [TBL] [Abstract][Full Text] [Related]
2. Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function. Khan SK; Xu H; Ukai-Tadenuma M; Burton B; Wang Y; Ueda HR; Liu AC J Biol Chem; 2012 Jul; 287(31):25917-26. PubMed ID: 22692217 [TBL] [Abstract][Full Text] [Related]
3. Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling. Edwards MD; Brancaccio M; Chesham JE; Maywood ES; Hastings MH Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2732-7. PubMed ID: 26903624 [TBL] [Abstract][Full Text] [Related]
4. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation. Anand SN; Maywood ES; Chesham JE; Joynson G; Banks GT; Hastings MH; Nolan PM J Neurosci; 2013 Apr; 33(17):7145-53. PubMed ID: 23616524 [TBL] [Abstract][Full Text] [Related]
5. Circadian repressors CRY1 and CRY2 broadly interact with nuclear receptors and modulate transcriptional activity. Kriebs A; Jordan SD; Soto E; Henriksson E; Sandate CR; Vaughan ME; Chan AB; Duglan D; Papp SJ; Huber AL; Afetian ME; Yu RT; Zhao X; Downes M; Evans RM; Lamia KA Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8776-8781. PubMed ID: 28751364 [TBL] [Abstract][Full Text] [Related]
6. Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons. Smyllie NJ; Bagnall J; Koch AA; Niranjan D; Polidarova L; Chesham JE; Chin JW; Partch CL; Loudon ASI; Hastings MH Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046033 [TBL] [Abstract][Full Text] [Related]
7. A methylbenzimidazole derivative regulates mammalian circadian rhythms by targeting Cryptochrome proteins. Yagi M; Miller S; Nagai Y; Inuki S; Sato A; Hirota T F1000Res; 2022; 11():1016. PubMed ID: 36226040 [No Abstract] [Full Text] [Related]
8. The human CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1. Parico GCG; Perez I; Fribourgh JL; Hernandez BN; Lee HW; Partch CL Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27971-27979. PubMed ID: 33106415 [TBL] [Abstract][Full Text] [Related]
9. Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice. Maywood ES; Elliott TS; Patton AP; Krogager TP; Chesham JE; Ernst RJ; Beránek V; Brancaccio M; Chin JW; Hastings MH Proc Natl Acad Sci U S A; 2018 Dec; 115(52):E12388-E12397. PubMed ID: 30487216 [TBL] [Abstract][Full Text] [Related]
10. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock. Hirano A; Nakagawa T; Yoshitane H; Oyama M; Kozuka-Hata H; Lanjakornsiripan D; Fukada Y PLoS One; 2016; 11(4):e0154263. PubMed ID: 27123980 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length. Gao P; Yoo SH; Lee KJ; Rosensweig C; Takahashi JS; Chen BP; Green CB J Biol Chem; 2013 Dec; 288(49):35277-86. PubMed ID: 24158435 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of the circadian clock protein PERIOD2 in living cells. Öllinger R; Korge S; Korte T; Koller B; Herrmann A; Kramer A J Cell Sci; 2014 Oct; 127(Pt 19):4322-8. PubMed ID: 25074809 [TBL] [Abstract][Full Text] [Related]
14. Functional characterization of the CRY2 circadian clock component variant p.Ser420Phe revealed a new degradation pathway for CRY2. Parlak GC; Baris I; Gul S; Kavakli IH J Biol Chem; 2023 Dec; 299(12):105451. PubMed ID: 37951306 [TBL] [Abstract][Full Text] [Related]
15. CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy. Miller S; Kesherwani M; Chan P; Nagai Y; Yagi M; Cope J; Tama F; Kay SA; Hirota T Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2203936119. PubMed ID: 36161947 [TBL] [Abstract][Full Text] [Related]
16. Identification and validation of cryptochrome inhibitors that modulate the molecular circadian clock. Chun SK; Jang J; Chung S; Yun H; Kim NJ; Jung JW; Son GH; Suh YG; Kim K ACS Chem Biol; 2014 Mar; 9(3):703-10. PubMed ID: 24387302 [TBL] [Abstract][Full Text] [Related]
17. Effects of cryptochrome-modulating compounds on circadian behavioural rhythms in zebrafish. Iida M; Nakane Y; Yoshimura T; Hirota T J Biochem; 2022 May; 171(5):501-507. PubMed ID: 34528676 [TBL] [Abstract][Full Text] [Related]
18. The NRON complex controls circadian clock function through regulated PER and CRY nuclear translocation. Lee Y; Shen Y; Francey LJ; Ramanathan C; Sehgal A; Liu AC; Hogenesch JB Sci Rep; 2019 Aug; 9(1):11883. PubMed ID: 31417156 [TBL] [Abstract][Full Text] [Related]
19. Postnatal constant light compensates Cryptochrome1 and 2 double deficiency for disruption of circadian behavioral rhythms in mice under constant dark. Ono D; Honma S; Honma K PLoS One; 2013; 8(11):e80615. PubMed ID: 24278295 [TBL] [Abstract][Full Text] [Related]
20. Differential roles for cryptochromes in the mammalian retinal clock. Wong JCY; Smyllie NJ; Banks GT; Pothecary CA; Barnard AR; Maywood ES; Jagannath A; Hughes S; van der Horst GTJ; MacLaren RE; Hankins MW; Hastings MH; Nolan PM; Foster RG; Peirson SN FASEB J; 2018 Aug; 32(8):4302-4314. PubMed ID: 29561690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]