These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 26966830)

  • 1. Assessment on selectivity of multi-contact cuff electrode for recording peripheral nerve signals using Fitzhugh-Nagumo model of nerve excitation.
    Taghipour-Farshi H; Frounchi J; Ahmadiasl N; Shahabi P; Salekzamani Y
    J Back Musculoskelet Rehabil; 2016 Nov; 29(4):749-756. PubMed ID: 26966830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P; Popovic MR; Yoo PB
    J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Mono-, Bi-, and Tripolar Configurations for Stimulation and Recording With an Interfascicular Interface.
    Nielsen TN; Sevcencu C; Struijk JJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):88-95. PubMed ID: 23981544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved nerve cuff electrode recordings with subthreshold anodic currents.
    Sahin M; Durand DM
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1044-50. PubMed ID: 9691579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode.
    Yoshida K; Kurstjens GA; Hennings K
    Med Eng Phys; 2009 Dec; 31(10):1261-70. PubMed ID: 19762269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based evaluation of the short-circuited tripolar cuff configuration.
    Andreasen LN; Struijk JJ
    Med Biol Eng Comput; 2006 May; 44(5):404-13. PubMed ID: 16937182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A device for emulating cuff recordings of action potentials propagating along peripheral nerves.
    Rieger R; Schuettler M; Chuang SC
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):937-45. PubMed ID: 24760928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nerve cuff technique for selective excitation of peripheral nerve trunk regions.
    Sweeney JD; Ksienski DA; Mortimer JT
    IEEE Trans Biomed Eng; 1990 Jul; 37(7):706-15. PubMed ID: 2394459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of contacts configuration and location on selective stimulation of cuff electrode.
    Taghipour-Farshi H; Frounchi J; Ahmadiasl N; Shahabi P; Salekzamani Y
    Biomed Mater Eng; 2015; 25(3):237-48. PubMed ID: 26407110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the performance of nerve cuff electrodes for recording.
    Andreasen LN; Struijk JJ; Lawrence S
    Med Biol Eng Comput; 2000 Jul; 38(4):447-53. PubMed ID: 10984944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the choice of reference on the selectivity of a multi-contact nerve cuff electrode.
    Koh RG; Zariffa J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4443-4446. PubMed ID: 28269264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling study of peripheral nerve recording selectivity.
    Perez-Orive J; Durand DM
    IEEE Trans Rehabil Eng; 2000 Sep; 8(3):320-9. PubMed ID: 11001512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes.
    Vasudevan S; Patel K; Welle C
    J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles.
    Badia J; Boretius T; Andreu D; Azevedo-Coste C; Stieglitz T; Navarro X
    J Neural Eng; 2011 Jun; 8(3):036023. PubMed ID: 21558601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular voltage profile for reversing the recruitment order of peripheral nerve stimulation: a simulation study.
    Lertmanorat Z; Durand DM
    J Neural Eng; 2004 Dec; 1(4):202-11. PubMed ID: 15876640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of interference source proximity on cuff imbalance.
    Triantis IF; Demosthenous A
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):354-7. PubMed ID: 16485768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective peripheral nerve recordings from nerve cuff electrodes using convolutional neural networks.
    Koh RGL; Balas M; Nachman AI; Zariffa J
    J Neural Eng; 2020 Jan; 17(1):016042. PubMed ID: 31581142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity of multiple-contact nerve cuff electrodes: a simulation analysis.
    Choi AQ; Cavanaugh JK; Durand DM
    IEEE Trans Biomed Eng; 2001 Feb; 48(2):165-72. PubMed ID: 11296872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the reduction of stimulation artifact noise in a tripolar nerve cuff electrode by application of a conductive shield layer.
    Sabetian P; Sadeghlo B; Zhang CH; Yoo PB
    Med Eng Phys; 2017 Feb; 40():39-46. PubMed ID: 27956020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibre-selective recording from peripheral nerves using a multiple-contact cuff: report on pilot pig experiments.
    Schuettler M; Seetohul V; Rijkhoff NJ; Moeller FV; Donaldson N; Taylor J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3103-6. PubMed ID: 22254996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.