These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Thermal Stability of Titanium Contacts to MoS Freedy KM; Zhang H; Litwin PM; Bendersky LA; Davydov AV; McDonnell S ACS Appl Mater Interfaces; 2019 Sep; 11(38):35389-35393. PubMed ID: 31468959 [TBL] [Abstract][Full Text] [Related]
3. Interface Chemistry and Band Alignment Study of Ni and Ag Contacts on MoS Wang X; Kim SY; Wallace RM ACS Appl Mater Interfaces; 2021 Apr; 13(13):15802-15810. PubMed ID: 33764063 [TBL] [Abstract][Full Text] [Related]
5. Low Contact Resistance on Monolayer MoS Sun Z; Kim SY; Cai J; Shen J; Lan HY; Tan Y; Wang X; Shen C; Wang H; Chen Z; Wallace RM; Appenzeller J ACS Nano; 2024 Aug; 18(33):22444-22453. PubMed ID: 39110477 [TBL] [Abstract][Full Text] [Related]
6. Fundamental Understanding of Interface Chemistry and Electrical Contact Properties of Bi and MoS Kim SY; Sun Z; Roy J; Wang X; Chen Z; Appenzeller J; Wallace RM ACS Appl Mater Interfaces; 2024 Oct; 16(40):54790-54798. PubMed ID: 39316070 [TBL] [Abstract][Full Text] [Related]
7. Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2. Kaushik N; Karmakar D; Nipane A; Karande S; Lodha S ACS Appl Mater Interfaces; 2016 Jan; 8(1):256-63. PubMed ID: 26649572 [TBL] [Abstract][Full Text] [Related]
8. Oxide and carbide formation at titanium/organic monolayer interfaces. Blackstock JJ; Donley CL; Stickle WF; Ohlberg DA; Yang JJ; Stewart DR; Williams RS J Am Chem Soc; 2008 Mar; 130(12):4041-7. PubMed ID: 18318537 [TBL] [Abstract][Full Text] [Related]
9. Tuning the electronic properties of Ti-MoS2 contacts through introducing vacancies in monolayer MoS2. Feng LP; Su J; Li DP; Liu ZT Phys Chem Chem Phys; 2015 Mar; 17(10):6700-4. PubMed ID: 25679945 [TBL] [Abstract][Full Text] [Related]
10. Comparative Study on Electronic Structures of Sc and Ti Contacts with Monolayer and Multilayer MoS2. Li Z; Li X; Yang J ACS Appl Mater Interfaces; 2015 Jun; 7(23):12981-7. PubMed ID: 26018612 [TBL] [Abstract][Full Text] [Related]
11. XPS investigation of titanium contact formation to ZnO nanowires. Barnett CJ; Castaing A; Jones DR; Lewis AR; Jenkins LJ; Cobley RJ; Maffeis TG Nanotechnology; 2017 Feb; 28(8):085301. PubMed ID: 28045379 [TBL] [Abstract][Full Text] [Related]
12. Controlling the work function of molybdenum disulfide by in situ metal deposition. Zhou P; Song X; Yan X; Liu C; Chen L; Sun Q; Zhang DW Nanotechnology; 2016 Aug; 27(34):344002. PubMed ID: 27419644 [TBL] [Abstract][Full Text] [Related]
13. Influence of metal-MoS2 interface on MoS2 transistor performance: comparison of Ag and Ti contacts. Yuan H; Cheng G; You L; Li H; Zhu H; Li W; Kopanski JJ; Obeng YS; Hight Walker AR; Gundlach DJ; Richter CA; Ioannou DE; Li Q ACS Appl Mater Interfaces; 2015 Jan; 7(2):1180-7. PubMed ID: 25514512 [TBL] [Abstract][Full Text] [Related]
14. On the Contact Optimization of ALD-Based MoS Mahlouji R; Zhang Y; Verheijen MA; Hofmann JP; Kessels WMM; Sagade AA; Bol AA ACS Appl Electron Mater; 2021 Jul; 3(7):3185-3199. PubMed ID: 34337417 [TBL] [Abstract][Full Text] [Related]
15. Chemical pathways in the interactions of reactive metal atoms with organic surfaces: vapor deposition of Ca and Ti on a methoxy-terminated alkanethiolate monolayer on Au. Walker AV; Tighe TB; Haynie BC; Uppili S; Winograd N; Allara DL J Phys Chem B; 2005 Jun; 109(22):11263-72. PubMed ID: 16852375 [TBL] [Abstract][Full Text] [Related]
16. The role of oxygen at the interface between titanium and carbon nanotubes. Felten A; Suarez-Martinez I; Ke X; Van Tendeloo G; Ghijsen J; Pireaux JJ; Drube W; Bittencourt C; Ewels CP Chemphyschem; 2009 Aug; 10(11):1799-804. PubMed ID: 19472267 [TBL] [Abstract][Full Text] [Related]
17. Effects of Titanium Layer Oxygen Scavenging on the High-k/InGaAs Interface. Winter R; Shekhter P; Tang K; Floreano L; Verdini A; McIntyre PC; Eizenberg M ACS Appl Mater Interfaces; 2016 Jul; 8(26):16979-84. PubMed ID: 27282201 [TBL] [Abstract][Full Text] [Related]
18. The electronic and chemical structure of the a-B3CO0.5:Hy-to-metal interface from photoemission spectroscopy: implications for Schottky barrier heights. Driver MS; Paquette MM; Karki S; Nordell BJ; Caruso AN J Phys Condens Matter; 2012 Nov; 24(44):445001. PubMed ID: 22976833 [TBL] [Abstract][Full Text] [Related]
19. Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. English CD; Shine G; Dorgan VE; Saraswat KC; Pop E Nano Lett; 2016 Jun; 16(6):3824-30. PubMed ID: 27232636 [TBL] [Abstract][Full Text] [Related]
20. Schottky Barrier Height of Pd/MoS Dong H; Gong C; Addou R; McDonnell S; Azcatl A; Qin X; Wang W; Wang W; Hinkle CL; Wallace RM ACS Appl Mater Interfaces; 2017 Nov; 9(44):38977-38983. PubMed ID: 29035026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]