These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26967817)

  • 41. Thiamine biosynthesis in algae is regulated by riboswitches.
    Croft MT; Moulin M; Webb ME; Smith AG
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20770-5. PubMed ID: 18093957
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TPP riboswitch characterization in Alishewanella tabrizica and Alishewanella aestuarii and comparison with other TPP riboswitches.
    Mehdizadeh Aghdam E; Sinn M; Tarhriz V; Barzegar A; Hartig JS; Hejazi MS
    Microbiol Res; 2017 Jan; 195():71-80. PubMed ID: 28024528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Farnesol induces the transcriptional accumulation of the Aspergillus nidulans Apoptosis-Inducing Factor (AIF)-like mitochondrial oxidoreductase.
    Savoldi M; Malavazi I; Soriani FM; Capellaro JL; Kitamoto K; da Silva Ferreira ME; Goldman MH; Goldman GH
    Mol Microbiol; 2008 Oct; 70(1):44-59. PubMed ID: 18681941
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation.
    Chauvier A; Picard-Jean F; Berger-Dancause JC; Bastet L; Naghdi MR; Dubé A; Turcotte P; Perreault J; Lafontaine DA
    Nat Commun; 2017 Jan; 8():13892. PubMed ID: 28071751
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of hisHF transcription of Aspergillus nidulans by adenine and amino acid limitation.
    Valerius O; Draht O; Kübler E; Adler K; Hoffmann B; Braus GH
    Fungal Genet Biol; 2001 Feb; 32(1):21-31. PubMed ID: 11277623
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amino acid catabolism by an areA-regulated gene encoding an L-amino acid oxidase with broad substrate specificity in Aspergillus nidulans.
    Davis MA; Askin MC; Hynes MJ
    Appl Environ Microbiol; 2005 Jul; 71(7):3551-5. PubMed ID: 16000761
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Altered expression and activities of enzymes involved in thiamine diphosphate biosynthesis in Saccharomyces cerevisiae under oxidative and osmotic stress.
    Kowalska E; Kujda M; Wolak N; Kozik A
    FEMS Yeast Res; 2012 Aug; 12(5):534-46. PubMed ID: 22449018
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ADHII in Aspergillus nidulans is induced by carbon starvation stress.
    Jones IG; Fairhurst V; Sealy-Lewis HM
    Fungal Genet Biol; 2001 Feb; 32(1):33-43. PubMed ID: 11277624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein kinase C (PkcA) of Aspergillus nidulans is involved in penicillin production.
    Herrmann M; Spröte P; Brakhage AA
    Appl Environ Microbiol; 2006 Apr; 72(4):2957-70. PubMed ID: 16598003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermodynamic examination of the pyrophosphate sensor helix in the thiamine pyrophosphate riboswitch.
    Furniss S; Grover N
    RNA; 2011 Apr; 17(4):710-7. PubMed ID: 21367973
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular identification and functional characterization of the human colonic thiamine pyrophosphate transporter.
    Nabokina SM; Inoue K; Subramanian VS; Valle JE; Yuasa H; Said HM
    J Biol Chem; 2014 Feb; 289(7):4405-16. PubMed ID: 24379411
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A protein kinase C-encoding gene, pkcA, is essential to the viability of the filamentous fungus Aspergillus nidulans.
    Ichinomiya M; Uchida H; Koshi Y; Ohta A; Horiuchi H
    Biosci Biotechnol Biochem; 2007 Nov; 71(11):2787-99. PubMed ID: 17986778
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conserved and specific responses to hypoxia in Aspergillus oryzae and Aspergillus nidulans determined by comparative transcriptomics.
    Terabayashi Y; Shimizu M; Kitazume T; Masuo S; Fujii T; Takaya N
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):305-17. PubMed ID: 22170104
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production.
    Xu G; Hua Q; Duan N; Liu L; Chen J
    Yeast; 2012 Jun; 29(6):209-17. PubMed ID: 22674684
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models].
    Gutiérrez-Rojas I; Moreno-Sarmiento N; Montoya D
    Rev Iberoam Micol; 2015; 32(1):1-12. PubMed ID: 24607657
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nudix hydrolase controls nucleotides and glycolytic mechanisms in hypoxic Aspergillus nidulans.
    Shimizu M; Takaya N
    Biosci Biotechnol Biochem; 2013; 77(9):1888-93. PubMed ID: 24018665
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Entropy Driving the Mg
    Li J; Zhang X; Hong L; Liu Y
    J Phys Chem B; 2022 Nov; 126(46):9457-9464. PubMed ID: 36379020
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thiamine pyrophosphate biosynthesis and transport in the nematode Caenorhabditis elegans.
    de Jong L; Meng Y; Dent J; Hekimi S
    Genetics; 2004 Oct; 168(2):845-54. PubMed ID: 15514058
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conformational changes in the expression domain of the Escherichia coli thiM riboswitch.
    Rentmeister A; Mayer G; Kuhn N; Famulok M
    Nucleic Acids Res; 2007; 35(11):3713-22. PubMed ID: 17517779
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel TPP-riboswitch activators bypass metabolic enzyme dependency.
    Lünse CE; Scott FJ; Suckling CJ; Mayer G
    Front Chem; 2014; 2():53. PubMed ID: 25121086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.