These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 26968344)
1. Deficiency of IκB Kinase β in Myeloid Cells Reduces Severity of Experimental Autoimmune Encephalomyelitis. Hao W; Decker Y; Schnöder L; Schottek A; Li D; Menger MD; Fassbender K; Liu Y Am J Pathol; 2016 May; 186(5):1245-57. PubMed ID: 26968344 [TBL] [Abstract][Full Text] [Related]
2. IKKβ-mediated inflammatory myeloid cell activation exacerbates experimental autoimmune encephalomyelitis by potentiating Th1/Th17 cell activation and compromising blood brain barrier. Lee MJ; Bing SJ; Choi J; Jang M; Lee G; Lee H; Chang BS; Jee Y; Lee SJ; Cho IH Mol Neurodegener; 2016 Jul; 11(1):54. PubMed ID: 27450563 [TBL] [Abstract][Full Text] [Related]
3. IKKβ deletion from CNS macrophages increases neuronal excitability and accelerates the onset of EAE, while from peripheral macrophages reduces disease severity. Avloniti M; Evangelidou M; Gomini M; Loupis T; Emmanouil M; Mitropoulou A; Tselios T; Lassmann H; Gruart A; Delgado-García JM; Probert L; Kyrargyri V J Neuroinflammation; 2024 Jan; 21(1):34. PubMed ID: 38279130 [TBL] [Abstract][Full Text] [Related]
4. Absence of Notch1 in murine myeloid cells attenuates the development of experimental autoimmune encephalomyelitis by affecting Th1 and Th17 priming. Fernández M; Monsalve EM; López-López S; Ruiz-García A; Mellado S; Caminos E; García-Ramírez JJ; Laborda J; Tranque P; Díaz-Guerra MJM Eur J Immunol; 2017 Dec; 47(12):2090-2100. PubMed ID: 28762472 [TBL] [Abstract][Full Text] [Related]
5. Dual roles of the adenosine A2a receptor in autoimmune neuroinflammation. Ingwersen J; Wingerath B; Graf J; Lepka K; Hofrichter M; Schröter F; Wedekind F; Bauer A; Schrader J; Hartung HP; Prozorovski T; Aktas O J Neuroinflammation; 2016 Feb; 13():48. PubMed ID: 26920550 [TBL] [Abstract][Full Text] [Related]
6. RGS10 deficiency ameliorates the severity of disease in experimental autoimmune encephalomyelitis. Lee JK; Kannarkat GT; Chung J; Joon Lee H; Graham KL; Tansey MG J Neuroinflammation; 2016 Feb; 13():24. PubMed ID: 26831924 [TBL] [Abstract][Full Text] [Related]
7. Transglutaminase 2 exacerbates experimental autoimmune encephalomyelitis through positive regulation of encephalitogenic T cell differentiation and inflammation. Oh K; Park HB; Seo MW; Byoun OJ; Lee DS Clin Immunol; 2012 Nov; 145(2):122-32. PubMed ID: 23001131 [TBL] [Abstract][Full Text] [Related]
8. Induction of inhibitory central nervous system-derived and stimulatory blood-derived dendritic cells suggests a dual role for granulocyte-macrophage colony-stimulating factor in central nervous system inflammation. Hesske L; Vincenzetti C; Heikenwalder M; Prinz M; Reith W; Fontana A; Suter T Brain; 2010 Jun; 133(Pt 6):1637-54. PubMed ID: 20424288 [TBL] [Abstract][Full Text] [Related]
9. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. Takahashi K; Prinz M; Stagi M; Chechneva O; Neumann H PLoS Med; 2007 Apr; 4(4):e124. PubMed ID: 17425404 [TBL] [Abstract][Full Text] [Related]
10. Lentivirus-mediated estrogen receptor α overexpression in the central nervous system ameliorates experimental autoimmune encephalomyelitis in mice. Hu X; Qin X Int J Mol Med; 2013 May; 31(5):1209-21. PubMed ID: 23525227 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease. Toft-Hansen H; Füchtbauer L; Owens T Glia; 2011 Jan; 59(1):166-76. PubMed ID: 21046558 [TBL] [Abstract][Full Text] [Related]
12. Experimental allergic encephalomyelitis. T cell trafficking to the central nervous system in a resistant Thy-1 congenic mouse strain. Skundric DS; Huston K; Shaw M; Tse HY; Raine CS Lab Invest; 1994 Nov; 71(5):671-9. PubMed ID: 7526038 [TBL] [Abstract][Full Text] [Related]
13. Myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis is ameliorated in interleukin-32 alpha transgenic mice. Yun J; Gu SM; Yun HM; Son DJ; Park MH; Lee MS; Hong JT Oncotarget; 2015 Dec; 6(38):40452-63. PubMed ID: 26564962 [TBL] [Abstract][Full Text] [Related]
14. [Myeloid-derived Gr-1⁺ CD11b⁺ suppressor cells are involved in immunoregulation of experimental autoimmune encephalomyelitis]. Wu F; Dang D; Guo J; Li H; Yang K; Zhao D; Guo P; Li Z Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2014 Aug; 30(8):789-92, 797. PubMed ID: 25108427 [TBL] [Abstract][Full Text] [Related]
15. Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17+IL-10+ T cells, CD4(-) IFN-gamma+ cells, and decreased macrophage IL-6 expression. Imler TJ; Petro TM Int Immunopharmacol; 2009 Jan; 9(1):134-43. PubMed ID: 19022403 [TBL] [Abstract][Full Text] [Related]
16. Age-associated changes in rat immune system: lessons learned from experimental autoimmune encephalomyelitis. Djikić J; Nacka-Aleksić M; Pilipović I; Stojić-Vukanić Z; Bufan B; Kosec D; Dimitrijević M; Leposavić G Exp Gerontol; 2014 Oct; 58():179-97. PubMed ID: 25128713 [TBL] [Abstract][Full Text] [Related]
18. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Lu HC; Kim S; Steelman AJ; Tracy K; Zhou B; Michaud D; Hillhouse AE; Konganti K; Li J Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5430-5441. PubMed ID: 32094172 [TBL] [Abstract][Full Text] [Related]
19. Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses. Lee MJ; Jang M; Choi J; Lee G; Min HJ; Chung WS; Kim JI; Jee Y; Chae Y; Kim SH; Lee SJ; Cho IH Mol Neurobiol; 2016 Apr; 53(3):1419-1445. PubMed ID: 25579380 [TBL] [Abstract][Full Text] [Related]
20. Ulinastatin attenuates experimental autoimmune encephalomyelitis by enhancing anti-inflammatory responses. Feng M; Shu Y; Yang Y; Zheng X; Li R; Wang Y; Dai Y; Qiu W; Lu Z; Hu X Neurochem Int; 2014 Jan; 64():64-72. PubMed ID: 24274996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]